Quinn Eastman

Six beautiful images — choose your favorites

WoodruffMatthew1

Matthew Woodruff — Bali Pulendran lab

ImageJ=1.48g unit=micron

Kenneth Myers — James Zheng lab

Joshua_Strauss_OPE_Image

Joshua Strauss — Elizabeth Wright lab

AndersonJoAnna

JoAnna Anderson — Francisco Alvarez lab

AlexTamas

Alexey Tamas — Charles Searles lab

Emory’s Office of Postdoctoral Education is holding a Best Image contest. The deadline to vote is this Thursday, April 30. You can look at these beautiful images (and guess exactly what they are, based on what lab they come from), but to VOTE, you need to go to the OPE site.

This is part of the run up to their Postdoctoral Research Symposium at the end of May.

(Hat tip to Ashley Freeman in Dept of Medicine!)

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Congratulations to AAAS Mass Media fellows

Two Emory graduate students, Anzar Abbas and Katie Strong, will be spending the summer testing their communication skills as part of the AAAS Mass Media fellowship program. The program is supposed to promote science communication by giving young scientists a taste of what life is like at media organizations around the country. Both of Emory’s fellows have already gained some experience in this realm.

Abbas, a Neuroscience student who recently joined brain imaging number cruncher Shella Keilholz‘s lab, will be at Howard Hughes Medical Institute. He is part of the group that recently revived the Science Writers at Emory publication In Scripto.

Strong, a Chemistry student working with Dennis Liotta on selective NMDA receptor drugs, will be at the Sacramento Bee. She has been quite prolific at the American Journal of Bioethics Neuroscience and its Neuroethics Blog.

(Thanks to Ian Campbell, a previous AAAS Mass Media fellow from Emory who worked at the Oregonian, for notifying me on this!)

Posted on by Quinn Eastman in Neuro, Uncategorized Leave a comment

Risk triangle: immune gene, insecticide, Parkinson’s

Genetic variation and exposure to pesticides both appear to affect risk for Parkinson’s disease. A new study has found a connection between these two risk factors, in a way that highlights a role for immune responses in progression of the disease.

The results are published in the inaugural issue of NPJ Parkinson’s Disease.

The findings implicate a type of pesticide called pyrethroids, which are found in the majority of commercial household insecticides, and are being used more in agriculture as other insecticides are being phased out. Although pyrethroids are neurotoxic for insects, exposure to them is generally considered safe for humans by federal authorities.

The study is the first making the connection between pyrethroid exposure and genetic risk for Parkinson’s, and thus needs follow-up investigation, says co-senior author Malu Tansey, PhD, associate professor of physiology at Emory University School of Medicine.

The genetic variation the team probed, which has been previously tied to Parkinson’s in larger genome-wide association studies, was in a non-coding region of a MHC II (major histocompatibility complex class II) gene, part of a group of genes that regulate the immune system.

“We did not expect to find a specific association with pyrethroids,” Tansey says. “It was known that acute exposure to pyrethroids could lead to immune dysfunction, and that the molecules they act on can be found in immune cells; now we need to know more about how longer-term exposure affects the immune system in a way that increases risk for Parkinson’s.”

“There is already ample evidence that brain inflammation or an overactive immune system can drive the progression of Parkinson’s. What we think may be happening here is that environmental exposures may be altering some people’s immune responses, in a way that promotes chronic inflammation in the brain.”

For this study, Emory investigators led by Tansey and Jeremy Boss, PhD, chair of microbiology and immunology, teamed up with Stewart Factor, DO, head of Emory’s Comprehensive Parkinson’s Disease Center, and public health researchers from UCLA led by Beate Ritz, MD, PhD. The first author of the paper is MD/PhD student George T. Kannarkat.

The UCLA researchers used a California state geographical database covering 30 years of pesticide use in agriculture. They defined exposure based on proximity (someone’s work and home addresses), but did not measure levels of pesticides in the body. Pyrethroids are thought to decay relatively quickly, especially in sunlight, with half-lives in soil of days to weeks. Read more

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

Fragile X syndrome: building a case for a treatment strategy

New research in mice strengthens a potential strategy for treating fragile X syndrome, the most common inherited form of intellectual disability and a major single-gene cause of autism spectrum disorder.

The results, published April 23 in Cell Reports, suggest that a drug strategy targeting a form of the enzyme PI3 (phosphoinositide-3) kinase could improve learning and behavioral flexibility in people with fragile X syndrome. The PI3 kinase strategy represents an alternative to one based on drugs targeting mGluR5 glutamate receptors, which have had difficulty showing benefits in clinical trials.

Research led by Emory scientists Gary Bassell, PhD and Christina Gross, PhD had previously found that the p110β form of PI3 kinase is overactivated in the brain in a mouse fragile X model, and in blood cells from human patients with fragile X syndrome.

Now they have shown that dialing back PI3 kinase overactivation by using genetic tools can alleviate some of the cognitive deficits and behavioral alterations observed in the mouse model. Drugs that target the p110β form of PI3 kinase are already in clinical trials for cancer.

“Further progress in this direction could lead to a clinical trial in fragile X,” says Bassell, who is chair of Cell Biology at Emory University School of Medicine. “The next step is to test whether this type of drug can be effective in the mouse model and in human patient cells.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Honokiol, Jack of all trades

Emory dermatologist Jack Arbiser discovered the anti-angiogenic properties of honokiol, a compound derived from magnolia cones, more than a decade ago. Since then, honokiol has been found to have anti-inflammatory, anti-oxidant and anticancer properties.

A paper published Tuesday in Nature Communications from researchers at the University of Chicago shows that honokiol inhibits the mitochondrial enzyme Sirt3, which has connections to longevity. Manesh Gupta and colleagues demonstrate that honokiol can block cardiac hypertrophy in mice, a finding with possible relevance for the treatment of heart failure.

Sirt3 has been linked both genetically to human life span, and until now, the only way to increase levels of Sirt3 was old-fashioned calorie restriction and/or endurance exercise.

The authors write: It is believed that Sirt3 does not play a role in embryonic development, but rather it fine tunes the activity of mitochondrial substrates by lysine deacetylation to protect cells from stress… To the best of our knowledge, this is the first report describing a pharmacological activator of Sirt3.

 

Posted on by Quinn Eastman in Cancer, Heart Leave a comment

Leslee Shaw explains coronary artery calcium scoring

On Thursday, cardiology researcher Leslee Shaw, PhD joined an exclusive club at Emory with her 2015 Dean’s Distinguished Faculty Lecture and Award.* Shaw is the co-director of Emory’s Clinical Cardiovascular Research Institute and research director of Emory Women’s Heart Center. Her lecture focused on the utility of coronary artery calcium (CAC) scoring in predicting cardiovascular disease.

Much cardiovascular risk research has focused on finding imaging or biomarker tests that can provide doctors with cost-effective decision-making power. One prominent question: should the patient take cholesterol-reducing statins? These tests should provide information above and beyond the Framingham Risk Score or its ACC/AHA update, which incorporates information about a patient’s age, sex, cholesterol/HDL, blood pressure and diabetes status.

CAC scoring is a good place to start, Shaw said, since it is a standardized, relatively inexpensive test that measures the buildup of calcium in atherosclerotic plaque, and the radiation dose is low compared with other cardiac imaging techniques. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Brain surgery with a light touch

As part of reporting on neurosurgeon Robert Gross’s work with patients who have drug-resistant epilepsy, I interviewed a remarkable woman, Barbara Olds. She had laser ablation surgery for temporal lobe epilepsy in 2012, which drastically reduced her seizures and relieved her epilepsy-associated depression.

Emory Medicine’s editor decided to focus on deep brain stimulation, rather than ablative surgery, so Ms. Olds’ experiences were not part of the magazine feature. Still, talking with her highlighted some interesting questions for me.

Emory neuropsychologist Dan Drane, who probes the effects of epilepsy surgery on memory and language abilities, had identified Olds as a good example of how the more precise stereotactic laser ablation procedure pioneered by Gross can preserve those cognitive functions, in contrast to an open resection. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

DBS for drug-resistant epilepsy

Space considerations in print forced us to slim down the feature on deep brain stimulation for drug resistant epilepsy, which appears in the Spring 2015 issue of Emory Medicine. While I encourage you to please read our story profiling playwright Paula Moreland, here are some take-away points:

*Surgery is a viable option for many patients with drug-resistant epilepsy, but not all of them, because the regions of the brain where the seizures start can have important functions. (Look for an upcoming post describing a patient I met for whom the surgical option was helpful.)

*Deep brain stimulation can reduce seizure frequency and improve quality of life for patients with drug-resistant epilepsy.

*In the large clinical trials on deep brain stimulation for epilepsy that have been run so far (SANTE and RNS), most participants do not see their seizures eliminated. Ms. Moreland is an exception.  Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Low doses of imatinib can stimulate innate immunity

Low doses of the anti-cancer drug imatinib can spur the bone marrow to produce more innate immune cells to fight against bacterial infections, Emory and Winship Cancer Institute researchers have found.

The results were published this week in the journal PLOS Pathogens.

The findings suggest imatinib, known commercially as Gleevec, or related drugs could help doctors treat a wide variety of infections, including those that are resistant to antibiotics, or in patients who have weakened immune systems. The research was performed in mice and on human bone marrow cells in vitro, but provides information on how to dose imatinib for new clinical applications.

“We think that low doses of imatinib are mimicking ‘emergency hematopoiesis,’ a normal early response to infection,” says senior author Daniel Kalman, PhD, associate professor of pathology and laboratory medicine at Emory University School of Medicine.

Imatinib, is an example of a “targeted therapy” against certain types of cancer. It blocks tyrosine kinase enzymes, which are dysregulated in cancers such as chronic myelogenous leukemia and gastrointestinal stromal tumors.

Imatinib also inhibits normal forms of these enzymes that are found in healthy cells. Several pathogens – both bacteria and viruses – exploit these enzymes as they transit into, through, or out of human cells. Researchers have previously found that imatinib or related drugs can inhibit infection of cells by pathogens that are very different from each other, including tuberculosis bacteria and Ebola virus. Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment