Baricitinib effectively reduces COVID-19 lung inflammation in NHP model

In the race to halt the COVID-19 pandemic, researchers at Yerkes National Primate Research Center of Emory University share two important findings from their latest peer-reviewed, published study in Cell.

Rhesus monkeys are a valid animal model for COVID-19 studies because the way they experience and respond to the virus has comparable similarities to the way the virus affects humans, the researchers say. And baricitinib, an anti-inflammatory medication that is FDA-approved for rheumatoid arthritis, is remarkably effective in reducing the lung inflammation COVID-19 causes when the medication is started early after infection.

The study results have immediate and important implications for treating patients with COVID-19. Baricitinib will be compared against the steroid dexamethasone in a NIAID-sponsored clinical trial called ACTT-4 (Adaptive COVID-19 Treatment Trial), which started in November.

Mirko Paiardini, PhD, a researcher in Yerkes’ Microbiology and Immunology division, and his team selected rhesus macaques as the animal model because they expected the monkeys would mimic the disease course in humans, including the virus traveling to the upper and lower airways, and causing high levels of inflammation in the lungs. The team randomized eight rhesus macaques into two groups – a control and a treatment group; the animals in the treatment group received baricitinib.

“Our results showed the medication reduced inflammation, decreased inflammatory cells in the lungs and, ultimately, limited the virus’ internal path of destruction,” Paiardini says. “Remarkably, the animals we treated with baricitinib rapidly suppressed the processes responsible for inducing lung inflammation, thus elevating baricitinib for consideration as a frontline treatment for COVID-19 and providing insights on the way the drug works and its effectiveness.”

The FDA recently granted baricitinib emergency use authorization in combination with remdesivir based on the results of the ACTT-2 findings. “Our study was under way concurrently and, now, solidifies the importance of baricitinib in treating COVID-19,” Paiardini adds.

Co-senior author Raymond Schinazi, PhD, DSc, inventor of the most commonly used HIV/AIDS drugs to prevent progression of the disease and death, says: “Our study shows the mechanisms of action are consistent across studies with monkeys and clinical trials with humans. This means the nonhuman primate model can provide enough therapeutic insights to properly test anti-inflammatory and other COVID-19 therapies for safety and effectiveness.”

Schinazi is the Frances Winship Walters Professor of Pediatrics at Emory University School of Medicine and is affiliated with Yerkes.

“Ray and his group have been investigating the potential of anti-inflammatory drugs, such as baricitinib, for years in the context of another infection, HIV, in which inflammation is a key cause of sickness and death,” Paiardini says. “Our laboratories have collaborated for years to test therapeutics in the nonhuman primate model of HIV infection, thus placing us in a unique position when COVID-19 hit the U.S. to focus our combined expertise and efforts to halt the virus. It took only a phone call between the two of us to switch gears, begin work to create a reliable and robust monkey model of COVID-19 at Yerkes and test the potential of drugs to block inflammation.”

Tim Hoang, first author and Emory doctoral student in the Immunology and Molecular Pathogenesis Program, says: “It was exciting to be at the forefront of the response to COVID-19 and to be part of this research team that involved collaboration from Yerkes and Emory infectious disease experts, geneticists, chemists, pathologists and veterinarians.”

Co-first author and Emory postdoctoral fellow Maria Pino, PhD, emphasizes: “We knew Yerkes was uniquely suited to conduct this study because of the research and veterinary expertise, specialized facilities and animal colony, and our team’s commitment to providing better treatment options for people who have COVID-19.”

The research team plans to conduct further studies to better understand the inflammation the virus causes and to develop more targeted approached to mitigate the damage COVID-19 leaves behind.

Steven Bosinger, PhD, co-senior author, and his research team conducted the genomic analyses that helped unravel the process by which baricitinib reduces inflammation. “One of the most exciting aspects of this project was the speed genomics brought to the collaborative research,” says Bosinger. “Eight months ago, we began using genomics to accelerate the drug screening process in order to identify treatable, molecular signatures of disease between humans and model organisms, such as the monkeys in this study, In addition to determining the effectiveness of baricitinib, this study highlights Emory researchers’ commitment to improving human health and, in this case, saving human lives.”

Bosinger is assistant professor, Department of Pathology & Laboratory Medicine, Emory School of Medicine (SOM) and Emory Vaccine Center (EVC); director, Yerkes Nonhuman Primate Genomics Core and a researcher in Yerkes’ Division of Microbiology and Immunology. 

Some of the others on the Emory research team include: Arun Boddapati (co-first author), Elise Viox, Thomas Vanderford, PhD, Rebecca Levit, MD, Rafick Sékaly, PhD, Susan Ribeiro, PhD, Guido Silvestri, MD, Anne Piantadosi, MD, PhD, Sanjeev Gumber, BVSc, MVSc, PhD, DACVP, Sherrie Jean, DVM, DACLAM, and Jenny Wood, DVM, DACLAM. Jacob Estes, PhD, at Oregon Health & Science University also collaborated.

Paiardini says, “So many colleagues had a key role in this study. First authors Tim and Maria as well as Yerkes veterinary and animal care personnel who worked non-stop for months on this project. This truly has been a collaborative effort at Emory University to help improve lives worldwide.”

This study was funded by the National Institutes of Health, Emory University’s COVID-19 Molecules and Pathogens to Populations and Pandemics Initiative Seed Grant, Yerkes’ base grant, which included support for the center’s Coronavirus Pilot Research Project grants, and Fast Grants.

Grant amounts (direct + indirect) are:

NIH R37AI141258, $836,452/yr (2018-23)

NIH R01AI116379, $783,714/yr (2015-20 + 2021 NCE)

NIH P51 OD011132, $10,540,602/yr (2016-20)

U24 AI120134 $681,214/yr (2020-2025)

S10OD026799 $985,030/yr (2019-2020)

Emory University COVID-19 Molecules and Pathogens to Populations and Pandemics Initiative Seed Grant, $150,000/1 yr

Fast Grants #2144, $100,000/1 yr

Note: Only a portion of the NIH grant funding was applied to the study reported in this news release. 

Posted on by Quinn Eastman in Immunology Leave a comment

About the author

Quinn Eastman

Science Writer, Research Communications qeastma@emory.edu 404-727-7829 Office

Add a Comment