Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

GluN2C

Complexity of NMDA receptor drug discovery target revealed

Know your target. Especially if your target is coming into focus for treating diseases such as schizophrenia and treatment-resistant depression.

NMDA receptors, critical for learning and memory, are sensors in the brain. Studying them in molecular detail is challenging, because they usually come in four parts, and the parts aren’t all the same.

Researchers at Emory have been probing one variety of NMDA receptor assembly found in the cerebellum, and also in the thalamus, a central gateway for sensory inputs, important for cognition, movement and sleep. This variety includes a subunit called GluN2C – together with two partners, GluN1 and GluN2A.

The results were published Thursday, June 28 in Neuron.

Outside of a living brain, NMDA receptor assemblies are typically studied with either two copies of GluN2C or two of GluN2A, but not with one of each, says senior author Stephen Traynelis, PhD, professor of pharmacology at Emory University School of Medicine

“Our data suggest that GluN2C is rarely by itself,” Traynelis says. “It’s typically paired up with another GluN2 subunit. This means we really don’t know what the properties of the main NMDA receptor in the cerebellum or the thalamus are.”

Psychiatrists have become interested in GluN2C because it appears to decline in the brains of schizophrenia patients. Mice without adequate levels of GluN2C display abnormalities in learning, memory and sensory processing, which together resemble schizophrenia in humans. In addition, GluN2C appears to be important for the mechanism of ketamine, a drug being studied for its rapid anti-depressant effects.

Using drugs that are selective for particular combinations of NMDA receptor subunits, Traynelis’ laboratory showed that an assembly of GluN2A and GluN2C is the dominant form in the mouse cerebellum. When GluN2C is introduced into cortical neurons, it prefers to pair up with GluN2A, the researchers found. This raises the question, in regions such as the thalamus, of whether GluN2C also appears with a partner GluN2 subunit. They also observed that the GluN2A-GluN2C assembly has distinct electrochemical properties. Read more

Posted on by Quinn Eastman in Neuro Leave a comment