Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Immunology

How antiviral antibodies become part of immune memory

Weapons production first, research later. During wartime, governments follow these priorities, and so does the immune system.

When fighting a bacterial or viral infection, an otherwise healthy person will make lots of antibodies, blood-borne proteins that grab onto the invaders. The immune system also channels some of its resources into research: storing some antibody-making cells as insurance for a future encounter, and tinkering with the antibodies to improve them.

In humans, scientists know a lot about the cells involved in immediate antibody production, called plasmablasts, but less about the separate group of cells responsible for the “storage/research for the future” functions, called memory B cells. Understanding how to elicit memory B cells, along with plasmablasts, is critical for designing effective vaccines.

EbolaBcells

Activated B cells (blue) and plasmablasts (red) in patients hospitalized for Ebola virus infection, with a healthy donor for comparison. From Ellebedy et al Nature Immunology (2016).

Researchers at Emory Vaccine Center and Stanford’s Department of Pathology have been examining the precursors of memory B cells, called activated B cells, after influenza vaccination and infection and during Ebola virus infection. The Ebola-infected patients were the four who were treated at Emory University Hospital’s Serious Communicable Disease Unit in 2014.

The findings were published Monday, August 15 in Nature Immunology.

“Ebola virus infection represents a situation when the patients’ bodies were encountering something they’ve never seen before,” says lead author Ali Ellebedy, PhD, senior research scientist at Emory Vaccine Center. “In contrast, during both influenza vaccination and infection, the immune system generally is relying on recall.”

Unlike plasmablasts, activated B cells do not secrete antibodies spontaneously, but can do so if stimulated. Each B cell carries different rearrangements in its DNA, corresponding to the specificity and type of antibody it produces. The rearrangements allowed Ellebedy and his colleagues to track the activated B cells, like DNA bar codes, as an immune response progresses. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

The cure word, as applied to HIV

HIV researchers are becoming increasingly bold about using the “cure” word in reference to HIV/AIDS, even though nobody has been cured besides the “Berlin patient,” Timothy Brown, who had a fortuitous combination of hematopoetic stem cell transplant from a genetically HIV-resistant donor. Sometimes researchers use the term “functional cure,” meaning under control without drugs, to be distinct from “sterilizing cure” or “eradication,” meaning the virus is gone from the body. A substantial obstacle is that HIV integrates into the DNA of some white blood cells.

HIV cure research is part of the $35.6 million, five-year grant recently awarded by the National Institutes of Health to Yerkes/Emory Vaccine Center/Emory Center for AIDS Research. Using the “shock and kill” approach during antiviral drug therapy, researchers will force HIV (or its stand-in in non-human primate research, SIV) to come out of hiding from its reservoirs in the body. The team plans to test novel “latency reversing agents” and then combine the best one with immunotherapeutic drugs, such as PD-1 blockers, and therapeutic vaccines.

The NIH also recently announced a cluster of six HIV cure-oriented grants, named for activist Martin Delaney, to teams led from George Washington University, University of California, San Francisco, Fred Hutchinson Cancer Research Center, Wistar Institute, Philadelphia, Beth Israel Deaconess Medical Center and University of North Carolina. Skimming through the other teams’ research plans, it’s interesting to see the varying degrees of emphasis on “shock and kill”/HIV latency, enhancing the immune response, hematopoetic stem cell transplant/adoptive transfer and gene editing weaponry vs HIV itself.

Posted on by Quinn Eastman in Immunology Leave a comment

How Zika infects the placenta

Zika virus can infect and replicate in immune cells from the placenta, without killing them, scientists have discovered. The finding may explain how the virus can pass through the placenta of a pregnant woman, on its way to infect developing brain cells in her fetus.

Zika_in_vitro_smaller

Infected placental macrophages. Zika antigens visible in red. From Quicke et al (2016).

The results were published in Cell Host & Microbe.

“Our results substantiate the limited evidence from pathology case reports,” says senior author Mehul Suthar, PhD, assistant professor of pediatrics at Emory University School of Medicine. “It was known that the virus was getting into the placenta. But little was known about where the virus was replicating and in what cell type.”

Scientists led by Suthar and Emory pediatric infectious disease specialist Rana Chakraborty, MD, found that Zika virus could infect placental macrophages, called Hofbauer cells, in cell culture. The virus could also infect another type of placental cell, called cytotrophoblasts, but only after a couple days delay and not as readily. Other researchers recently reported that syncytiotrophoblasts, a more differentiated type of placental cell than cytotrophoblasts, are resistant to Zika infection.

The cells for the experiments were derived from full-term placentae, obtained from healthy volunteers who delivered by Cesarean section. The level of viral replication varied markedly from donor to donor, which hints that some women’s placentae may be more susceptible to viral infection than others. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

A distinguished flu vaccine researcher

Congratulations to Richard Compans, PhD, who delivered the Dean’s Distinguished Faculty Lecture on May 12, joining a select group of Emory researchers who have received this award. After Dean Chris Larsen presented the award, Compans also received a Catalyst award from the Georgia Research Alliance, presented by GRA President and CEO Mike Cassidy.compans115a-2

At Emory, Compans has led research on ways to improve influenza vaccination, such as vaccines based on non-infectious virus-like particles and microneedle patches for delivery (now being tested clinically). The 2009 H1N1 flu epidemic, as well as concern about pandemic avian flu, have meant that Compans’ work has received considerable attention in the last several years. In his talk, he also discussed his early work on the structure of influenza virus, the virus’s complex ecology, and the limitations of current flu vaccines.

Compans was recruited to Emory from UAB in 1992 and was chair of Emory’s microbiology and immunology department for more than a decade. He was also instrumental in recruiting Rafi Ahmed to establish and lead the Emory Vaccine Center. He is now co-principal investigator of the Emory-UGA Center of Excellence for Influenza Research and Surveillance.

Some recent papers that illustrate the extent of Compans’ influence: Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Fooling the test: antibiotic resistant bacteria that look susceptible

A diagnostic test used by hospitals says a recently isolated strain of bacteria is susceptible to the “last resort” antibiotic colistin. But the strain actually ignores treatment with colistin, causing lethal infections in animals.

Through heteroresistance, a genetically identical subpopulation of antibiotic-resistant bacteria can lurk within a crowd of antibiotic-susceptible bacteria. The phenomenon could be causing unexplained treatment failures in the clinic and highlights the need for more sensitive diagnostic tests, researchers say.

In Nature Microbiology (published online Monday, May 9), scientists led by David Weiss, PhD, describe colistin-heteroresistant strains of Enterobacter cloacae, a type of bacteria that has been causing an increasing number of infections in hospitals around the world.

“Heteroresistance has been observed previously and its clinical relevance debated,” Weiss says. “We were able to show that it makes a difference in an animal model of infection, and is likely to contribute to antibiotic treatment failures in humans.”

Weiss is director of the Emory Antibiotic Resistance Center and associate professor of medicine (infectious diseases) at Emory University School of Medicine and Emory Vaccine Center. His laboratory is based at Yerkes National Primate Research Center. The co-first authors of the paper are graduate students Victor Band and Emily Crispell.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Malaria vaccine development: chimeric protein, no myth

Third in a series on malaria immunology from graduate student Taryn McLaughlin. Sorry for the delay last week, caused by technical blog glitches.

It’s easy for me to find reasons to brag when it comes to research here at Emory. However, even an unbiased person should be excited about the malaria vaccine platform being developed by Alberto Moreno at the Emory Vaccine Center.

His vaccine is based on a chimeric protein (a protein that is a combination of bits and pieces of multiple proteins, a la the creature from Greek mythology) that should get your immune system to target multiple stages of the Plasmodium vivax life cycle. Part of it targets the infectious sporozoite, part of it targets the blood stage merozoite, and part of it will even target the transmitted gamete in future versions. This seems like a no brainer. Of course we should be targeting multiple stages! 
Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Why the RTS,S malaria vaccine is such a tease

Continuing from Monday’s post, IMP graduate student Taryn McLaughlin explains why the most advanced malaria vaccine is actually not that great.

Malaria has plagued humans for thousands of years. And while we have known the causative agents of the disease- for 150 years, malaria remains scientifically frustrating. In fact, one of the most common treatments for the disease is simply a derivative of a treatment used in ancient China.

One of the most frustrating features is that there is no sterilizing immunity. In other words, for many diseases once you are infected with the microbe responsible, you develop an immune response and then never get the disease again. Not so with malaria. Compounded with terrible treatment and the impracticality of ridding the world of mosquitos, a vaccine sounds like pretty much our only hope. And yet this has been scientifically challenging and unsuccessful for many many reasons.

In fact a number of vaccine candidates have come along in the last few decades that have seemed SO promising only to go on and break our hearts in clinical trials. The most recent of which is a vaccine that goes by the name RTS,S (named for the different components of the vaccine).

As a quick refresher, Plasmodium enters the body via mosquitos as a sporozoite. It then migrates through the skin going into the blood and eventually making it’s way to the liver. Here it goes inside liver cells where it replicates and turns into merozoites (such that one sporozoite becomes thousands of merozoites). This stage of the disease is asymptomatic. Some time later, all those merozoites burst out of your liver cells causing mayhem and invading your red blood cells. Here, they once again replicate and metamorphose. Fun times. Anyways, during the last stage, some of those plasmodium become gametes which get eaten by mosquitos thus completing the life cycle. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Why malaria vaccine development is hard

In recognition of World Malaria Day, Lab Land will have a series of posts from Taryn McLaughlin, a graduate student in Emory’s IMP program. Her posts will set the stage for upcoming news about malaria research at Emory and Yerkes. Taryn is part of Cheryl Day’s lab and is also an associate producer with the AudiSci podcast.

Those of us in the US are fortunate to not have to consider malaria in our day-to-day lives. Globally though, malaria is a serious public health threat with nearly 3.2 billion people at risk and close to half a million deaths every year. The scientific community has been developing malaria vaccines for decades. Yet a robust vaccine still remains elusive. Why?

IMP graduate student Taryn McLaughlin

IMP graduate student Taryn McLaughlin

One set of barriers comes from economics: malaria’s strongest impact is in developing countries. But there is just as strong a case to be made for scientific obstacles. Frankly, the parasite (technically a bunch of species of microbes that I’ll just lump together under the umbrella term Plasmodium) that causes malaria is just smarter than we are.

I’m only kidding, but it is a fascinating organism. Its complexity makes it difficult to pin down and also interesting to write about. But before we talk about why Plasmodium is such a pain, let’s first discuss what exactly makes an effective vaccine. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

More on Alzheimer’s-blood pressure link

Emory’s Alzheimer’s Disease Research Center recently announced a grant that will support studies on the connections between blood pressure regulation and Alzheimer’s disease. It focuses on the roles of the renin-angiotensin system, the targets of common blood pressure medications, and endothelial cells, which line blood vessels.

Research on that theme is already underway at Emory. Malu Tansey is leading a large project funded by the National Institute on Aging ($3.4 million) with a similar title: “Inflammation and Renin-Angiotensin System Dysfunction as Risk Factors for Alzheimer’s Disease.” Co-investigators are Felicia Goldstein and Lary Walker at Emory and Christopher Norris at the University of Kentucky.

Both studies build on evidence that molecules that control blood pressure and inflammation also drive progression of Alzheimer’s disease, including work by Emory’s Whitney Wharton and Ihab Hajjar. They had found in an observational study that people who take medications targeting the renin-angiotensin system have a lower risk of progressing from mild cognitive impairment to Alzheimer’s.

Wharton is gearing up to test that idea more directly in an interventional study with the generic angiotensin receptor blocker telmisartan. This study is part of a Part the Cloud initiative supported by the Alzheimer’s Association.

Tansey’s project has started bearing fruit in an animal model of Alzheimer’s, according to this Keystone meeting report from Alzforum. Last summer, her graduate student Kathryn Macpherson described initial findings on the effects of an anti-inflammatory (anti-TNF) agent, which also has positive effects in a Parkinson’s model, and her plans to investigate the effects of high-sugar, high-fat diet.

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

Measuring microbiome disruption

How should doctors measure how messed up someone’s intestinal microbiome is?

This is the topic of a recent paper in American Journal of Infection Control from Colleen Kraft and colleagues from Emory and the Centers for Disease Control and Prevention. The corresponding author is epidemiologist Alison Laufer Halpin at the CDC.

A “microbiome disruption index” could inform decisions on antibiotic stewardship, where a patient should be treated or interventions such as fecal microbial transplant (link to 2014 Emory Medicine article) or oral probiotic capsules.

What the authors are moving towards is similar to Shannon’s index, which ecologists use to measure diversity of species. Another way to think about it is like the Gini coefficient, a measure of economic inequality in a country. If there are many kinds of bacteria living in someone’s body, the disruption index should be low. If there is just one dominant type of bacteria, the disruption index should be high.

In the paper, the authors examined samples from eight patients in a long-term acute care hospital (Wesley Woods) who had recently developed diarrhea. Using DNA sequencing, they determined what types of bacteria were present in patients’ stool. The patients’ samples were compared with those from two fecal microbial transplant donors. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment
« Previous   1 2 ... 7 8 9 10 11 12 13 14 15 16 ... 21 22   Next »