If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics.
Stephen T. Warren, 1953-2021
Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more
At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia.
Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more
The symposium is taking place in Whitehead Auditorium in the Whitehead Biomedical Research Building. Talks from flu researchers based around the country, followed by a poster session, are on Thursday. From Emory, Jacob Kohlmeier and Rafi Ahmed are speaking Friday morning.
Emory Medicine readers may remember the Stinchcombs, a Georgia family caring for two daughters with a genetic neurological/developmental disorder called NGLY1 deficiency. We found their efforts to care for their daughters inspiring.
The rapid discovery of several children with NGLY1 deficiency, facilitated by social media, has led to a wave of research. Two recent papers represent advances toward finding treatments.
In PLOS Genetics, Japanese scientists showed that deleting the ENGase gene can partially rescue problems created by NGLY1 deficiency in a mouse model (RIKEN press release). That implies drugs that inhibit the ENGase enzyme might have similar positive effects.
Scientists knew that the NGLY1 enzyme removes chains of sugars from misfolded proteins that are stalled in cells’ production pipeline. ENGase is another enzyme that acts on those sugar chains, and its absence compensates for the lack of NGLY1. Read more
Keqiang Ye’s lab at Emory recently published a paper in Nature Communications that offers a two for one deal in Alzheimer’s drug discovery.
Periodically we hear suggestions that the amyloid hypothesis, the basis of much research on Alzheimer’s disease, is in trouble. Beta-amyloid is a toxic protein fragment that accumulates in extracellular brain plaques in Alzheimer’s, and genetics for early-onset Alzheimer’s point to a driver role for amyloid too.
In mice, inhibiting AEP hits two targets (amyloid and tau) with one shot
Unfortunately, anti-amyloid agents (either antibodies that sop up beta-amyloid or drugs that steer the body toward making less of it) have not shown clear positive effects in clinical trials.
That may be because the clinical trials started too late or the drugs weren’t dosed/delivered right, but there is a third possibility: modifying amyloid by itself is not enough.
When cancer cells split off from a tumor to seed deadly metastases, they are thought to travel as clusters or packs, a phenomenon known as collective invasion. The members of an invasive pack are not all alike, scientists at Winship Cancer Institute of Emory University have learned.
Lung cancer cells making up an invasive pack have specialized roles as leaders and followers, which depend on each other for mobility and survival, the scientists report in Nature Communications. Those who have been diagnosed with mesothelioma due to asbestos exposure may consult a mesothelioma attorney to determine which legal actions they can take.
The distinctions between leaders and followers, as well as their interdependence, could potentially unlock new avenues for future treatments focused on impeding or preventing cancer metastasis. According to senior author Adam Marcus, PhD, associate professor of hematology and medical oncology at Winship Cancer Institute and Emory University School of Medicine, understanding these dynamics may be crucial. If you’re looking for more information or assistance, you might consider searching for “medical clinics near me” to explore local healthcare options.
“We’re finding that leader and follower cells have a symbiotic relationship and depend on each for survival and invasion,” he says. “Because metastatic invasion is the deadliest aspect of cancer, our goal is to find agents that disrupt that symbiotic relationship.”
Marcus and former graduate student Jessica Konen, PhD began by observing how a mass of lung cancer cells behaves when embedded in a 3-D protein gel. The cells generally stick together, but occasionally, a few cells extend out of the mass like tentacles, with the leader cell at the tip.
“We saw that when the leader cell became detached or died unexpectedly, the followers could no longer move,” says Konen, now a postdoctoral fellow at MD Anderson. “In one particular movie, we saw a leader cell come out away from the rest of the cells, and then seem to realize that nobody was following him. He actually did a 180, and went back to grab cells to bring with him.”
The drug target VMAT2 has appeared in biomedical news lately because of a pair of FDA approvals. One medicine treats the iatrogenic movement disorder tardive dyskinesia, the first approved to do so, and the other is for symptoms of Huntington’s disease.
Gary Miller, PhD
When Emory folks see VMAT2, they should think of two things: the neurotransmitter dopamine, and Parkinson’s research conducted by Gary Miller and his colleagues. They have made a case that activators of VMAT2 would be beneficial in Parkinson’s, but the drugs in the news were inhibitors, and presumably would make Parkinson’s worse.
VMAT2 (vesicular monoamine transporter 2) is responsible for transporting dopamine into synaptic vesicles, tiny packages for delivery. As Miller’s lab has shown, mice deficient in VMAT2 can be a model for the non-motor and motor aspects of Parkinson’s. In these mice, not only are certain nervous system functions impaired, but the dopamine packaging problem inflicts damage on the neurons.
Miller’s more recent work on a related molecule called SV2C is puzzling, but intriguing. The gene encoding SV2C had attracted attention because of its connection to the striking ability of cigarette smoking to reduce Parkinson’s risk, possibly mediated by nicotine’s effect on dopamine in the brain.
I say puzzling because SV2C’s role in brain cells can’t be described as easily as VMAT2’s. Read more
Emory cell biologist David Katz’s lab has facilitated a collaboration with our neighbors at Oglethorpe University, working with undergraduates on the worm C. elegans and contributing to Alzheimer’s/frontotemporal dementia research. A new article from Oglethorpe describes how C. elegans is ideal for undergraduate biology instruction. Check it out.
In the photo: Oglethorpe student and Katz lab intern Caitlin May, Oglethorpe biology professor Karen Schmeichel, Elias Castro — also an Oglethorpe student and Katz lab intern, Katz lab postdoc Teresa Lee and David Katz.
In lung cancer patients who were taking immunotherapy drugs, testing for revived immune cells in their blood partially predicted whether their tumors would shrink. The results were published online by PNAS on April 26.
This finding comes from a small study of 29 patients, who were being treated at Winship Cancer Institute of Emory University with drugs blocking the PD-1 pathway, also known as checkpoint inhibitors.
The research findings propose a simple concept: if the immune system’s CD8 T cells, designed to recognize and attack tumors, show a response to checkpoint inhibitor drugs like nivolumab, pembrolizumab, or atezolizumab, that’s an optimistic signal. This area of exploration may also offer insights into why some patients are unresponsive to checkpoint inhibitor treatments and how these drugs could be combined with other therapies to boost response rates. If you are seeking expert medical attention, a reliable option could be to visit the walk-in clinic Manhattan Beach, where you can access high-quality care and benefit from advanced medical knowledge.
While looking for activated immune cells in the blood is not yet predictive enough for routine clinical use, such tests could provide timely information. Monitoring the immune response could potentially help oncologists and patients decide, within just a few weeks of starting immunotherapy drugs, whether to continue with the treatment or combine it with something else, says co-senior author Suresh Ramalingam, MD, Winship’s deputy director.
“We hypothesize that re-activated CD8 T cells first proliferate in the lymph nodes, then transition through the blood and migrate to the inflamed tissue,” says Rafi Ahmed, PhD, director of the Vaccine Center and a Georgia Research Alliance Eminent Scholar. “We believe some of the activated T cells in patients’ blood may be on their way to the tumor.”
The rest of the Emory Vaccine Center/Winship Cancer Institute press release is here. A few additional points: Read more
Emory scientists and supporters of science were out in substantial numbers Saturday at the March for Science Atlanta in Candler Park.
March organizers, many of whom came from the Emory research community, say they want to continue their advocacy momentum and community-building after the event’s success. Check out the web site “Science Marches On” for post-march activities. The organizers have estimated that somewhere around 8,000 people participated in Saturday’s march, based on aerial drone footage and Atlanta Police estimates.
Marchers Jarred Whitlock, Bethany Whitlock, Erica Werner, Victor Faundez, and Chelsea Lee (left to right)
Several issues propelled the Marches for Science around the world: proposed research funding reductions, skepticism on specific issues such as climate change or vaccines, and attention on diversity in science. Some Emory folks such as autism geneticist/communicator Chris Gunter and oncology nursing leader Deborah Bruner were in Washington DC for the March for Science there.
Here in Atlanta, marchers had a variety of colorful costumes and signs, with messages ranging from the blunt to the subtle. The crowds enjoyed sunny weather and pre-march entertainment from the punk rock band Leucine Zipper and the Zinc Fingers.
Former Emory neuroscience postdoc Alison Bernstein, who blogs as “Mommy PhD” and is now an assistant professor at Michigan State, was one of the first speakers, describing how some vaccine skeptics have embraced unproven and possibly dangerous treatments for conditions such as eczema.
Emory virologist Anice Lowen was quoted in this WABE story.
The upcoming HBO movie of The Immortal Life of Henrietta Lacks reminds us that biomedical research has a complex legacy, when it comes to informed consent and people of color.
A paper from Emory investigators, published in AJOB Empirical Bioethics, touches on related current issues. The paper examines how race and close experience with traumatic brain injury affect study participants’ views of informed consent in clinical research.
This emerged from a study of community consultation for EFIC (exception from informed consent), in connection with a nationwide clinical trial of progesterone for traumatic brain injury (TBI). EFIC describes clinical research performed when the normal process of obtaining patients’ informed consent is not possible, because of emergency conditions such as seizures or TBI. Before such studies can be undertaken, the FDA calls for protective procedures and community consultation.
In this case, researchers surveyed 2612 people at 12 sites involved in the TBI study. The survey asked about attitudes toward the EFIC aspects of the study and also asked if they had personal experience with traumatic brain injury – either themselves or someone close to them. How that personal connection affected their responses was influenced by race.
Key paragraph from discussion:
Among white participants, increased levels of acceptance of EFIC were found among those with any connections to TBI. On the other hand, among participants identifying as black or other nonwhite races, there was decreased acceptance of EFIC enrollment among TBI patients and no increase in acceptance among those with a family member/loved one with TBI. The fact that black and white participants with no personal TBI experience or with a more distant connection to TBI had similar acceptance rates suggests that baseline acceptance of EFIC among these two groups is fairly similar and that the experience with the condition itself plays a role in driving the observed differences…
When facing a life-threatening infection, the “yuck factor” is a minor concern. Fecal microbiota transplant (FMT for short) has become an accepted treatment for recurrent Clostridium difficile infection, which can cause severe diarrhea and intestinal inflammation.
In a new video, Emory physicians Colleen Kraft and Tanvi Dhere explain how FMT restores microbial balance when someone’s internal garden has been disrupted.
C. difficile or “C diff” is a hardy bacterium that can barge into the intestines after another infection has been treated with antibiotics, when competition for real estate is low. In the last few years, doctors around the world have shown that FMT can resolve recurrent C diff infection better than antibiotics alone.
At Emory, Kraft and Dhere have performed almost 300 FMTs and report a 95 percent success rate when treating recurrent C diff. They have established a standard slate of stool donors, whose health is carefully screened.
Building on their experience with the procedure, Kraft and Dhere are studying whether FMT can head off other antibiotic-resistant infections besides C diff in kidney transplant patients. They have teamed up with infectious disease specialists Aneesh Mehta and Rachel Friedman-Moraco to conduct this study. Read more