Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Dysbindin, a bad actor in schizophrenia

Cell biologist Victor Faundez has been getting some attention for his research on dysbindin, a protein linked to schizophrenia. The information helps to make sense of the complex picture emerging from genetic studies of schizophrenia.

Genetics plays a major role in schizophrenia, but there is no one gene that pulls the trigger. The gene encoding dysbindin was first identified as a potential bad actor in 2002, by researchers studying families with a high rate of schizophrenia. Dysbindin levels are reduced in the brains of schizophrenia patients, and mouse mutants lacking the protein develop normally but have altered signaling in the brain.

Dysbindin is known to be part of a machine that produces vesicles (tiny bubbles containing proteins and neurotransmitters) and transports them around the cell. This machine, found in several tissues besides the brain, has a mouthful of a name: BLOC (Biogenesis of Lysosome-related Organelles Complex). Faundez’ lab has shown that defects in BLOC make proteins in neurons “miss the bus” that would transport them from the cell body out to the synapse.

The BLOC complex transports vesicles from the cell body out to the synapse. When parts of the complex are missing, neurons appear to develop aberrantly.

The team of Faundez, postdoc Avanti Gokhale and their colleagues set out to define all the parts of the BLOC machine and find other proteins dysbindin comes into contact with. Several of the proteins they found (the results were published in March 2012 in Journal of Neuroscience) are affected by copy number variation in schizophrenia patients.

“This was a surprise,” Faundez says. “The genomic studies in schizophrenia identify lots of genes, but looking at them, we don’t know how they relate to each other.”

Copy number variation means: patients have a deletion or an extra copy of the gene involved. A copy number variation doesn’t mean someone is always going to get schizophrenia, but it may be enough to tip the balance when other risk factors add up.

Faundez says his team’s results highlight an approach to examining genes implicated in complex diseases: rather than looking at individual genes, look at circuits in the cell. A strong example: two of the genes that encode dysbindin interaction partners are located within the chromosome 22q11 region. Individuals with a deletion in this region develop schizophrenia at a rate of 30 percent.

Faundez’s team also found that dysbindin interacts with peroxiredoxins, antioxidant enzymes that clean up hydrogen peroxide. They went on to confirm that dysbindin mutant cells have elevated peroxide levels, which hints at a role for altered redox signaling in schizophrenia.

Biomarkers in schizophrenia have been elusive, but Faundez says he thinks his research could lead to identifying a subset of schizophrenia patients where a disturbance of the BLOC system is especially important.

Emory geneticists Andres Moreno-De Luca and Christa Lese-Martin are coauthors on the JN paper.

 

Posted on by Quinn Eastman in Neuro Leave a comment

Present at the creation: immunology from chickens to lampreys

You can get far in biology by asking: “Which came first, the chicken or the egg?” Max Cooper discovered the basis of modern immunology by asking basic questions.

Cooper was selected for the 2012 Dean’s Distinguished Faculty Lecture and Award, and on Thursday evening dazzled an Emory University School of Medicine audience with a tour of his scientific career. He joined the Emory faculty in 2008 as a Georgia Research Alliance Eminent Scholar.

Max Cooper, MD

Cooper’s research on the development of the immune system, much of it undertaken before the era of cloned genes, formed the underpinnings of medical advances ranging from bone marrow transplants to monoclonal antibodies. More recently, his research on lampreys’ divergent immune systems has broadened our picture of how adaptive immunity evolved.

Cooper grew up in Mississippi and was originally trained as a pediatrician, and became interested in inherited disorders that disabled the immune system, leaving children vulnerable to infection. He joined Robert Good’s laboratory at the University of Minnesota, where he began research on immune system development in chickens.

In the early 1960s, Cooper explained, scientists thought that all immune cells developed in one place: the thymus. Working with Good, he showed that there are two lineages of immune cells in chickens: some that develop in the thymus (T cells) and other cells responsible for antibody production, which develop in the bursa of Fabricius (B cells). [On Thursday, he evoked chuckles by noting that a critical discovery that drove his work was published in the journal Poultry Science after being rejected by Science.]

Cooper moved on to the University of Alabama, Birmingham, and there made several discoveries related to how B cells develop. A collaboration with scientists at University College, London led to the identification of the places where B cells develop in mammals: fetal liver and adult bone marrow.

Cooper’s research on lampreys began in Alabama and has continued after he came to Emory in 2008. Primitive lampreys are thought to be an early offshoot on the evolutionary tree, before sharks, the first place where an immune system resembling those of mammals and birds is seen. Lampreys’ immune cells produce “variable lymphocyte receptors” that act like our antibodies, but the molecules look very different in structure. These molecules were eventually crystallized and their structure probed, in collaboration with Ian Wilson in San Diego.

Lampreys have variable lymphocyte receptors, which resemble our antibodies in function but not in structure

Cooper said he set out to figure out “which came first, T cells or B cells?” but ended up discovering something even more profound. He found that lampreys also have two separate types of immune cells, and the finding suggests that the two-arm nature of the immune system may have preceded the appearance of the particular features that mark those cells in evolution.

 

 

 

Posted on by Quinn Eastman in Immunology 1 Comment

Resurrecting an ancient receptor to understand a modern drug

To make progress in structural biology, look millions of years into the past. Emory biochemist Eric Ortlund and his colleagues have been taking the approach of “resurrecting” ancient proteins to get around difficulties in probing their structures.

Steroid receptor evolution

Ortlund’s laboratory recently published a paper in Journal of Biological Chemistry describing the structure of a protein that is supposed to have existed 450 million years ago, in a complex with an anti-inflammatory drug widely used today. MSP graduate student Jeffrey Kohn is the first author.

Mometasone furoate is the active ingredient of drugs used to treat asthma, allergies and skin irritation. It is part of a class of drugs known as glucocorticoids, which can have a host of side effects such as reduced bone density and elevated blood sugar or blood pressure with long-term use.

One reason for these side effects is because the steroid receptor proteins that allow cells to detect and respond to hormones such as estrogen, testosterone, aldosterone and cortisol are all related. Mometasone is a good example of how glucocorticoids cross-react, Ortlund says. That made it an ideal test of the technique of mixing ancient receptors with modern drugs. BHRT can also be beneficial for those struggling with low or unbalanced hormones.

“We used this structure to determine why mometasone cross reacts with the progesterone receptor, which regulates fertility, and why it inhibits the mineralocorticoid receptor, which regulates blood pressure,” he says.

Mometasone furoate in complex with the ancient receptor

Scientists have examined the sequences of the genes that encode these proteins at several points on the evolutionary tree, and used the information to reconstruct what the ancestral receptor looked like. This helps solve some problems that biochemists studying these proteins have had to deal with. One of these is: changing one amino acid in the protein sometimes means that the whole protein malfunctions.

“The ancestral receptors are more tolerant to mutation, and they are more promiscuous with respect to activation,” Ortlund says. “That is, they tend to respond to a wider array of endogenous steroid hormones, which makes sense in an evolutionary context. This enhanced activation profile and tolerance to mutation is what we feel makes them ideally suited to structure-function studies.”

The blog Panda’s Thumb has an interesting discussion of this area of research, in relation to the larger question of how proteins evolve.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Stigma and shame block mental health treatment in Black community

As Dr. Sarah Vinson rotated through her first year of clinical work as a Child Psychiatry Fellow in the Department of Psychiatry and Behavioral Sciences at Emory, she quickly became aware that there are some significant roadblocks in getting people in the African-American community engaged in treatment for mental health problems.

Sarah Vinson, MD, Department of Psychiatry and Behavioral Sciences

“Misinformation, a lack of trust in the system, racism, and financial circumstances are some of the forces that can create barriers to making appropriate decisions about seeking treatment,” says Vinson.

In order to take a step toward resolving the problem, Vinson created an online mental health outreach program targeting the Black community. The website serves as an anonymous resource for patients and their families, or anyone who is interested in finding out more about mental illness. Contact this psychologist if you need to consult with mental health professionals.

This user-friendly online program provides educational materials, offers links to professional organizations, lists mental health professionals and provides descriptions of different types of mental illnesses as they relate specifically to African-Americans. The website also includes an interactive forum where people can share experiences.

Expanding access to mental health resources is essential for addressing the unique challenges faced by the Black community, and programs like Brain Balance can play a crucial role in this effort. These programs offer a personalized approach to improving cognitive and emotional well-being, focusing on strengthening the brain-body connection.

By targeting the underlying factors that contribute to challenges such as attention issues, anxiety, and stress, Brain Balance helps individuals build resilience and develop skills to better navigate life’s complexities. This aligns seamlessly with the goals of online outreach programs, complementing their educational efforts with actionable, science-based strategies for enhancing mental health.

“The Black community’s traditional reluctance to discuss mental health and illness comes at much too high a cost,” says Dr. Vinson.

“People may be fearful of being misjudged by their churches and families, so they don’t discuss their problems,” she explains. “However, it is the support of family and friends that is largely responsible for a successful course of treatment, particularly when it comes to children and adolescents, or people with severe mental illness. Regrettably, when people access care without reinforcement from their loved ones, they often drop out before they are better.”

Untreated, mental illness can cause strained relationships, social dysfunction, and numerous other problems that can result in divorce, unemployment, and even suicide. Seeking help from professionals, such as Psychologists in Sarasota Florida, can be a crucial step in addressing these issues and improving mental health.

Dr. Vinson is the recipient of an American Psychiatric Association/Substance Abuse and Mental Health Services Administration Fellowship, which provides funds for programming related to minority mental health.

Posted on by admin in Uncategorized Leave a comment

Emory transplant roundup

A recent Associated Press story highlighted clinical trials aimed at helping kidney transplant recipients give up their anti-rejection drugs:

The experimental approach: Transplant the seeds of a new immune system along with a new kidney. It’s the 21st-century version of a bone marrow transplant, and possible for now only if the transplanted kidney comes from a living donor.

How does it work? Doctors cull immune system-producing stem cells and other immunity cells from the donor’s bloodstream. They blast transplant patients with radiation and medications to wipe out part of their own bone marrow, far more grueling than a regular kidney transplant. That makes room for the donated cells to squeeze in and take root, creating a sort of hybrid immunity that scientists call chimerism, borrowing a page from mythology.

Emory Transplant Center scientific director Allan Kirk is leading a study that takes a similar approach, involving a depletion of the recipient’s immune cells and an infusion of bone marrow, which introduces new immune cells from the donor.

Allan Kirk, MD, PhD

Nature Medicine also has a good explanation of this area of research. Kirk is quoted in this recent story:

“The impetus to take the risk and pull people off immunosuppressants completely is lower now,” says Kirk… “It’s all about risk-benefit ratios and about making smart decisions with the tools we have—and we have a lot more tools now.”

Why go through so much trouble to avoid anti-rejection drugs? The most common drugs taken by transplant recipients, called calcineurin inhibitors, can reduce an individual’s ability to fight infections, lead to high blood pressure and high blood sugar and, ironically, tend to damage the kidney over time. Emory scientists played a major role in developing an alternative, belatacept, which was approved last year by the FDA.

Emory transplant surgeon Ken Newell was also mentioned in the AP story for his study of rare individuals who were able to go “cold turkey” and avoid having their immune systems reject their donated kidneys. One of these individuals, Lisa Robinson, had an interesting story to tell about how came to that point:

Three years after her kidney transplant, she found it hard to tolerate the side effects of the immunosuppressive drugs, which included swelling, weight gain and depression. On top of that, her creatinine levels were rising, indicating that her donated kidney was losing function. Without explicit approval from her doctor, she decided to taper off her drugs, first cyclosporine and then steroids.

“This turned out to be the right choice for me, but I’m not suggesting that others do what I did,” she says. “Everyone has to figure out what works for them. My main motivation was that I didn’t want to go through another kidney transplant.”

Based on data from Robinson and other people who had similar experiences, Newell has been able to identify a pattern of genes turned on in their immune cells that may predict whether someone could be able to become “tolerant.” Much of transplant biology focuses on one type of immune cell (T cells), but Newell found that the cells that may make the biggest difference for long-term tolerance are different, B cells. This makes sense because of B cells’ role in chronic rejection, Emory’s Stuart Knechtle has written.

Posted on by Quinn Eastman in Uncategorized Leave a comment

The challenges of graduate school

Biochemist Paul Doetsch’s recent appearance in a Science magazine feature on laboratory leadership led to a conversation with him about the challenges of graduate school.

He emphasized that scientific research is a team sport, and brilliance on the part of the lab head may not yield fruit without a productive relationship with the people in the lab. Doetsch suggested talking with Lydia Morris, a graduate student in the Genetics and Molecular Biology graduate program. Morris has been working in Doetsch’s lab for several years and is about to complete her degree. She has been examining the in vivo distribution of DNA repair proteins.

In this video, Morris and Doetsch talk about the differences between turn-the-crank and blue-sky projects, and the importance of backup projects, communications, high expectations and perseverance.

Posted on by Quinn Eastman in Cancer Leave a comment

Media’s contribution to stigma

Photo credit: Julia Freeman-Woolpert

Tireless advocacy in the last decade by mental health professionals and people who are affected by mental illness has aimed to reduce the stigma of psychiatric disorders. To determine the influence those efforts have had on news media portrayals, Emory researchers studied newspaper articles using the terms “schizophrenia” and “schizophrenic” in the years 2000 versus 2010.

“The primary goal of journalists is to give fair, accurate and unbiased reports of news events that will be of interest to the public,” says study author Arshya Vahabzadeh, MD, resident psychiatrist in the Department of Psychiatry and Behavioral Sciences at Emory University School of Medicine.

Arshya Vahabzadeh, MD, resident psychiatrist in the Department of Psychiatry and Behavioral Sciences at Emory University School of Medicine says that people who suffer from a mental illness often internalize negative references, and develop coping mechanisms that become obstacles to treatment.

“A secondary goal is to capture the attention of readers and viewers,” he says. “Unfortunately, stories linked to a mental illness have been shown to strongly attract readers’ attention, and to contribute to unfavorable public conceptions of mental illness.”

According to the researchers, the decade from 2000 to 2010 was of particular importance to the study because as the new millennium began, attention increasingly focused on public awareness of mental illness, with mental health professionals, advocacy groups and governmental bodies targeting de-stigmatization of psychiatric disorders.

Vahabzadeh and his colleagues examined hundreds of articles that appeared in five major newspapers during a five-month time period during 2000 and 2010, searching for the terms “schizophrenia” and “schizophrenic”.

The researchers found that during that period in 2000, 7,114 articles were published in the five selected newspapers, 247 of which mentioned schizophrenia. During the same period in 2010, 4,397 articles were published, with 151 articles mentioning schizophrenia.

Although a larger percentage of the articles were published in 2000 than in 2010, the percentage of articles mentioning schizophrenia did not differ. Similarly, there was no significant difference in metaphorical usage of the term “schizophrenia” – using the term to describe conflicting decisions or illogical actions.

Of particular concern to investigators was that 60 percent of the human-interest stories in both time periods focused on highly emotive reports of violence, dangerousness and criminality. Murders committed by people with schizophrenia accounted for almost half of such articles. The authors did, however, recognize a smaller proportion of articles focusing on crimes and murder committed by people with schizophrenia in 2010 compared to 2000.

Additionally, despite the fact that people with schizophrenia are more prone to be the victims rather than perpetrators of crime, situations in which people with schizophrenia were reported as victims accounted for only 0.5% of the articles reviewed.

“People who suffer from a mental illness often internalize these negative references, and develop coping mechanisms that become obstacles to treatment,” explains Vahabzadeh.

“Negative perceptions also may result in problems for those who are successfully treated,” he says. “People with schizophrenia may encounter stigma when they attempt to integrate into society, build relationships, find employment and even housing. It is important for us as mental health professionals to look for opportunities to educate the media on ways to become a positive force to reduce stigma.”

Nadine Kaslow, PhD, professor and chief psychologist at the Emory University School of Medicine, whose mentorship inspired the study, says “This study provides invaluable information about the persistence of negative and unfounded portrayals of people living with schizophrenia to the public. It is imperative that everyone interacts with people living with mental illness respectfully and with compassion, and that they be welcomed members of our community.”

The study was published in the Journal of Psychiatric Practice http://www.ncbi.nlm.nih.gov/pubmed/22108403.

Additional study investigators include Justine Wittenauer, MD, Emory University School of Medicine and Erika Carr, PhD, Yale University School of Medicine.

Posted on by admin in Uncategorized Leave a comment

The body’s anticancer defenses come in a variety of sizes

Sometimes you have to look at the whole picture, big and small.

Sarah Cork, PhD

That was the lesson that emerged from Winship Cancer Institute researcher Erwin Van Meir’s laboratory, highlighted in a recent paper in Oncogene. Van Meir’s team has been studying vasculostatin, a secreted protein that inhibits blood vessel growth by tumors (hence the name). Vasculostatin was discovered by Balveen Kaur, now at Ohio State, while she was in Van Meir’s lab.

Van Meir and his colleagues originally began studying vasculostatin because it is a product of a gene that brain tumors somehow silence or get rid of, and studying the obstacles our bodies throws in cancer’s way may be a good way to learn how to fight it via modern medicine. Eventually, it could form the basis for a treatment to prevent a tumor from attracting new blood vessels.

Vasculostatin is somewhat unique because it is a secreted fragment of a membrane-bound protein, called BAI1. BAI1 has an apparently separate function as an “engulfment receptor,” allowing the recognition and internalization of dying cells.

Most of the secreted vasculostatin is around 40 kilodaltons in size, not 120 as previously thought.

Graduate student Sarah Cork discovered that most of the vasculostatin protein being produced by cells is actually much smaller than what had been originally discovered. She and Van Meir were surprised to find that the smaller, cleaved form of the protein still has potent anti-angiogenic activity.

The researchers were using a technique where a mixture of proteins is separated within a gel by electric current, transferred to a polymer sheet, and probed with antibodies. The large proteins appear at the top and the small proteins at the bottom.

“Previously, we had been running the gels for a long time to detect large protein fragments, so missed out on what was happening with small fragments which run off the gel,” Van Meir says. “We were only looking at the top of the
gel, when the smaller form of vasculostatin was actually much more
abundant as you can see on the picture of a gel run for a shorter time.”

More broadly, Van Meir says that the finding adds to understanding about BAI1’s dual function in the brain and how vasculostatin (big or small) might be used in anticancer therapy.

Posted on by Quinn Eastman in Cancer Leave a comment

Fragile X protein: one toggle switch, many circuits

The fragile X protein — missing in the most common inherited form of intellectual disability — plays a central role in neurons and how they respond to external signals. Cell biologist Gary Bassell and his colleagues have been examining how the fragile X protein (FMRP) acts as a “toggle switch.”

Gary Bassell, PhD

FMRP controls the activity of several genes by holding on to the RNAs those genes encode. When neurons get an electrochemical signal from the outside, FMRP releases the RNAs, allowing the RNAs to be made into protein, and facilitating changes in the neurons linked to learning and memory.

The Bassell lab’s new paper in Journal of Neuroscience reveals the role of another player in this process. The first author is postdoctoral fellow Vijay Nalavadi.

The researchers show that neurons modify FMRP with ubiquitin, the cellular equivalent of a tag for trash pickup, after receiving an external signal. In general, cells attach ubiquitin to proteins so that the proteins get eaten up by the proteasome, the cellular trash disposal bin. Here, neurons are temporarily getting rid of FMRP, prolonging the effects of the external signal.

Posted on by Quinn Eastman in Neuro Leave a comment

Dye me anticancer yellow

Over the last few years, pathologist Keqiang Ye and his colleagues have displayed an uncanny talent for finding potentially useful medicinal compounds. Recently another example of this talent appeared in Journal of Biological Chemistry.

Keqiang Ye, PhD

Postdoctoral fellow Qi Qi is first author on the paper. Collaborators include Jeffrey Olson, Liya Wang, Hui Mao, Haian Fu, Suresh Ramalingam and Shi-Yong Sun at Emory and Paul Mischel at UCLA.

Qi and Ye were looking for compounds that could inhibit the growth of an especially aggressive form of brain cancer, glioblastoma with deletion in the tumor suppressor gene PTEN. Tumors with this deletion do not respond to currently available targeted therapies.

The researchers found that acridine yellow G, a fluorescent dye used to stain microscope slides, can inhibit the growth of this tumor:

Oral administration of this compound evidently decreases the tumor volumes in both subcutaneous and intracranial models and elongates the life span of brain tumor inoculated nude mice. It also displays potent antitumor effect against human lung cancers. Moreover, it significantly decreases cell proliferation and enhances apoptosis in tumors…

Optimization of this compound by improving its potency through medicinal chemistry modification might warrant a novel anticancer drug for malignant human cancers.

Ye’s team observed that acridine yellow G appears not to be toxic in rodents. However, the acridine family of compounds tends to intercalate (insert itself) into DNA and can promote DNA damage, so more toxicology studies are needed. Other acridine family compounds such as quinacrine have been used to treat bacterial infections and as antiinflammatory agents, they note.

A paramecium stained with acridine orange, which shows anticancer activity for tumors containing PTEN mutations

Posted on by Quinn Eastman in Cancer Leave a comment