Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

amyloid-beta

Default daydreaming linked to Alzheimer’s amyloid

Cut the daydreaming, and you can lessen the neurodegenerative burden on your brain? Surprising new research suggests that how we use our brains may influence which parts of the brain are most vulnerable to amyloid-beta (Aβ), which forms plaques in the brain in Alzheimer’s disease.

Lary Walker, PhD, has been investigating why amyloid accumulation seems to lead to Alzheimer's in humans but not non-human primates

In the June issue of Nature Neuroscience, Yerkes National Primate Research Center scientist Lary Walker and Mathias Jucker from the Hertie Institute for Clinical Brain Research in Tübingen, Germany summarize intriguing recent research on regional brain activity and Aβ accumulation.

Neuroscientists have described a set of interconnected brain regions called the “default mode network,” which appear to be activated during activities such as introspection, memory retrieval, daydreaming and imagination. When a person engages in an externally directed task, such as reading, playing a musical instrument, or solving puzzles, activity in the default network decreases.

The Nature Neuroscience paper, from David Holtzman and colleagues at Washington University St. Louis, suggests prolonged metabolic activation of the default-mode network in mice can render that system vulnerable to Aβ by accelerating Aβ deposition and plaque growth.

This line of research turns the “use it or lose it” idea upside-down. Use the default network too much, and the effect may be harmful. Walker and Jucker suggest why education, for example, appears to head off Alzheimer’s in epidemiological studies: by getting the brain involved in non-default/externally directed mode activity.

This idea has additional consequences that can be tested in the clinic. For example, by increasing metabolism in default-mode regions of the brain, prolonged wakefulness caused by sleep disorders might increase Aβ burden.

Walker and Jucker conclude: “Meanwhile, perhaps the best strategy for lessening soluble Aβ in the default mode network may be simply to work diligently, play hard and sleep well.”

 

Posted on by Quinn Eastman in Neuro 2 Comments