Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

blood clotting

More evidence for autoantibodies in severe COVID-19

A recent paper from Emory pathologist Cheryl Maier and colleagues provides more evidence for autoantibodies in critically ill COVID-19 patients. Autoantibodies are signs that the immune system attacking the body itself, and are features of diseases such as lupus and rheumatoid arthritis. They have been proposed as an explanation for the severity of some acute COVID-19 cases, as well as continued symptoms in long COVID.

Generally, antibodies are a good thing, and a major goal of COVID-19 vaccination is to drive the immune system to generate protective antibodies against the coronavirus. With autoantibodies and COVID, the idea is that intense inflammation coming from viral infection is causing immune cells to become confused. Not every COVID-19 patient’s immune system goes off the rails, but the train wreck seems to happen more often in COVID-19.

Last year, immunologist Ignacio Sanz’s lab at Emory demonstrated that patients with severe COVID-19 display signs of immune dysregulation similar to those seen in lupus. A follow-up preprint found the suspected autoantibodies, and several other labs have observed autoantibodies in COVID-19 that may be sabotaging antiviral responses or perturbing blood clotting. Now, an active topic of investigation is whether the autoantibodies last longer or don’t diminish as quickly in long COVID. Stay tuned.

This image has an empty alt attribute; its file name is MaierC.jpg
Cheryl Maier, MD, PhD

However, in the current paper in Cell Reports Medicine, autoantibodies were also found in most control samples from intensive care unit patients with pneumonia or sepsis, who are experiencing a state of systemic inflammation comparable to severe COVID-19.

“It’s a reminder that autoantibodies are not necessarily unique to COVID,” Maier says. “They may be more dramatic in COVID, but we see autoantibodies associated with other severe diseases too.”

Maier is medical director for Emory’s Special Coagulation Laboratory, and her team came to the autoimmunity question from a side angle. They were investigating blood clots and hyperviscosity in COVID-19 patients, and wanted to check whether high concentrations of antibodies might be an explanation. Antibodies are proteins, after all, and if someone’s blood is full of them, they thicken it.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Strength tests for platelets

Bleeding disorders could one day be diagnosed by putting platelets through strength tests, researchers have proposed.

Biomedical engineers from Emory and Georgia Tech have devised a microfluidic testing ground where platelets can demonstrate their strength by squeezing two protein dots together. Imagine rows and rows of strength testing machines from a carnival, but very tiny. Platelets are capable of exerting forces that are several times larger, in relation to their size, in comparison with muscle cells.

After a blood clot forms, it contracts, promoting wound closure and restoration of normal blood flow. This process can be deficient in a variety of blood clotting disorders. Previously, it was difficult to measure individual platelet’s contributions to contraction, because clots’ various components got in the way.

The prototype diagnostic tools are described in Nature Materials.

platelet_strength_test

Top: platelets exert their strength. Bottom left: red = platelets, green = fibrinogen dots. Bottom right: size of actual device.

“We discovered that platelets from some patients with bleeding disorders are ‘wimpier’ than platelets from healthy people,” says Wilbur Lam, MD, PhD, assistant professor in the Department of Pediatrics at Emory University School of Medicine and in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “Our device may function as a new physics-based method to test for bleeding disorders, complementary to current methods.”

The first author of the paper is instructor David Myers, PhD. Lam is also a physician in the Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta. Collaborators at North Carolina State University led by Ashley Brown, PhD, contributed to testing the device.

The scientists infer how strong or wimpy someone’s platelets are by measuring how far the protein dots move, taking a picture of the rows of dots, and then analyzing the picture on a computer. The dots are made of fibrinogen, a sticky protein that is the precursor for fibrin, which forms a mesh of insoluble strands in a blood clot.

In addition to detecting problems with platelet contraction in patients with known inherited disorders such as Wiskott Aldrich syndrome, Myers, Lam and colleagues could also see differences in some patients who had bleeding symptoms, but who performed normally on standard diagnostic tests. Read more

Posted on by Quinn Eastman in Heart, Uncategorized Leave a comment

Tapping evolution to improve biotech products

Scientists can improve protein-based drugs by reaching into the evolutionary past, a paper published this week in Nature Biotechnology proposes.

As a proof of concept for this approach, the research team from Emory, Children’s Healthcare of Atlanta and Georgia Tech showed how “ancestral sequence reconstruction” or ASR can guide engineering of the blood clotting protein known as factor VIII, which is deficient in the inherited disorder hemophilia A.

fviii_2r7e

Structure of Factor VIII

Other common protein-based drugs include monoclonal antibodies, insulin, human growth hormone and white blood cell stimulating factors given to cancer patients. The authors say that ASR-based engineering could be applied to other recombinant proteins produced outside the human body, as well as gene therapy.

It has been possible to produce human factor VIII in recombinant form since the early 1990s. However, current factor VIII products still have problems: they don’t last long in the blood, they frequently stimulate immune responses in the recipient, and they are difficult and costly to manufacture.

Experimental hematologist and gene therapist Chris Doering, PhD and his colleagues already had some success in addressing these challenges by filling in some of the sequence of human factor VIII with the same protein from pigs.

“We hypothesized that human factor VIII has evolved to be short lived in the blood to reduce the risk of thrombosis,” Doering says. “And we reasoned that by going even farther back in evolutionary history, it should be possible to find more stable, potent relatives.”

Doering is associate professor of pediatrics at Emory University School of Medicine and Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta. The first author of the paper is former Molecular and Systems Pharmacology graduate student Philip Zakas, PhD.

Doering’s lab teamed up with Trent Spencer, PhD, director of cell and gene therapy for the Aflac Cancer and Blood Disorders Center, and Eric Gaucher, PhD, associate professor of biological sciences at Georgia Tech, who specializes in ASR. (Gaucher has also worked with Emory biochemist Eric Ortlund – related item on ASR from Gaucher)

ASR involves reaping the recent harvest of genome sequences from animals as varied as mice, cows, goats, whales, dogs, cats, horses, bats and elephants. Using this information, scientists reconstruct a plausible ancestral sequence for a protein in early mammals. They then tweak the human protein, one amino acid building block at a time, toward the ancestral sequence to see what kinds of effects the changes could have. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment

FDA approves treatment for acquired hemophilia

On Oct. 24, the Food and Drug Administration approved Obizur, a treatment for acquired hemophilia A. Obizur was originally developed by a research team led by Emory hematologist Pete Lollar. The Obizur technology was licensed by Emory in 1998 to startup company Octagen (more about Octagen from Philadelphia Business Journal) and eventually brought to commercial availability by the pharmaceutical firm Baxter International.

Lollar is Hemophilia of Georgia Professor of Pediatrics in the Aflac Cancer and Blood Disorders Center at Emory University School of Medicine and Children’s Healthcare of Atlanta. The team that developed the drug included Ernest Parker, John Healey and Rachel Barrow, and followed a research collaboration between Lollar and Emory cardiologist Marschall Runge (now at UNC).

Hemophilia is a group of blood clotting disorders leading to excessive bleeding that can occur spontaneously or following injury or surgery. Hemophilia A is caused by a deficiency of clotting factor VIII, and can be either inherited or acquired.

In acquired hemophilia A, the immune system is somehow provoked into making antibodies against factor VIII that inactivate it. Acquired hemophilia is a challenge for doctors to deal with because patients frequently present with severe, life threatening bleeding and also because it’s a surprise: patients do not have a previous personal or family history of bleeding episodes. Antibodies to factor VIII also can be a problem for approximately 30 percent of patients with inherited hemophilia.

Lollar’s team developed a modified form of factor VIII, derived from the protein sequence of pigs, which is less of a red flag to the immune system. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Clot dissolver tPA’s tardy twin could aid in stroke recovery

Emory researchers led by neurologist Manuel Yepes, MD have identified a protein released by neurons while the brain is recovering from a stroke. The results were published online today in Journal of Neuroscience.

The protein, called urokinase-type plasminogen activator or uPA, has been approved by the FDA to dissolve blood clots in the lungs. It has been tested in clinical trials in some countries as a treatment for acute stroke.

The Emory team’s findings suggest that in stroke, uPA’s benefits may extend beyond the time when doctors’ principal goal is dissolving the blood clot that is depriving the brain of blood.
Instead, uPA appears to help brain cells recover from the injuries induced by loss of blood flow. Treating mice with uPA after an experimental stroke can improve their recovery of motor function, the researchers found.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Possible diabetes drug/stent interaction

Diabetes and heart disease often intersect. Emory cardiologist Aloke Finn and his colleagues recently had two papers in the Journal of the American College of Cardiology and in Atherosclerosis describing a possible interaction between the widely used diabetes drug metformin and drug-eluting stents, which are used to to treat coronary artery disease. Anwer Habib, MD is the first author of both papers.

The stent props the once-blocked artery open while the drugs in the stents are supposed to prevent the artery from becoming blocked again. The drugs — usually mTOR inhibitors such as http://www.magliettedacalcioit.com everolimus or the newer zotarolimus — slow down cell growth, but this cuts both ways. The drugs slow down the recovery of the lining of the blood vessel and this may contribute to blood clot formation after stent placement.

In cultured human cells and in rabbits with implanted stents, Finn and colleagues showed that metformin augmented the effect of mTOR inhibitors on regrowth of the blood vessel lining. (However — the authors acknowledge that their animal model was not diabetic or atherosclerotic.)

The findings could mean that people taking metformin would need to take medications to prevent blood clotting medications for a longer time after stent placement. The authors say that clinical studies following patients who receive drug-eluting stents should look at metformin’s effects on blood clotting events. A study examining drug eluting stents in diabetic patients is in the works at Emory.

 

Posted on by Quinn Eastman in Heart Leave a comment