Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

CRISPR

Manipulating mouse genes to order, CRISPR or old-school

Just a follow-up to last week’s announcement from the Emory Transgenic Mouse and Gene Targeting core that they are offering CRISPR/Cas9 gene editing for mice. Using CRISPR/Cas9 to produce genetically altered mice is a

Knockout_mice

Gene targeting – the 20th century way

substantial advance over the old way of doing knockouts and other manipulations (which itself won a Nobel Prize in 2007), mainly because it’s faster and easier.

To appreciate the difference, consider that the old way involves introducing DNA into mouse embryonic stem cells, and then selecting for the rare cells that take up and incorporate the DNA in the right way. Then the ES cells have to be injected into a blastocyst, followed by mouse breeding to “go germline.”

With CRISPR/Cas9, it’s possible to inject pieces of RNA that target the desired genetic changes, straight into a one-cell stage mouse embryo. Not every embryo has all the right changes, but the frequency is high enough to inject and screen. As this review explains, it’s possible to introduce mutations into three genes at once and get mice quickly, rather than make each one separately and then breed the mice together, which can take many months.

Also, because of the need for drug selection, the targeting construct in old-school gene targeting has to be a blunt instrument. That can make it hard to make subtle changes to a gene — like introduce point mutations corresponding to natural variations linked with human disease — without taking a sledgehammer to the entire gene locus. CRISPR/Cas9 takes care of that problem.

Despite the advantages of this technology, three things to keep in mind:

*Many genetically altered mice are already available “off the shelf” as part of the International Knockout Mouse/Mouse Phenotyping Consortium.

*Emory’s Mouse Core has been working with the company Ingenious Gene Targeting, and has been out-sourcing some of the tedious aspects of old-school gene targeting in mice to Ingenious, starting last year. Technicians there can generate a dazzling array of conditional knockouts. If you want your favorite gene to flip around and produce a fluorescent protein when you give the mice an antibiotic, but only in some cells — Ingenious can do that. Old school is actually still the way to go for fancy stuff like this.

*Jackson Labs in Maine also works with Emory, offering similar services, and offers a guarantee. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Islet transplants from fish?

The shortage of human organ donors has led scientists to investigate animals as a potential source for transplantable organs or tissues. Pigs are often mentioned because of their size: similar to ours.

Recently, prospects for xenotransplantation brightened when Harvard geneticist George Church demonstrated the removal of dozens of endogenous retroviruses from the pig genome, in a tour de force of the CRISPR/Cas9 gene editing technique.

Emory researchers Susan Safley and Collin Weber have been exploring the possibility of using different animals for xenotransplantation: fish, specifically tilapia.

Why fish? This review details several advantages tilapia may offer in the field of islet transplant, but first – a reminder about islets.

Islets are the clusters of cells in the pancreas that produce insulin. Several clinical trials, including this one led by Emory’s Nicole Turgeon, have shown that islets isolated from deceased human donors can restore normal blood sugar regulation in patients with type 1 diabetes. Still, obstacles remain such as the shortage of human islets, and the loss of insulin independence over time, even with the use of drugs that hold off immune rejection.

For islet transplant, here are some of the proposed advantages presented by tilapia:

*tilapia have large, distinct islet organs called Brockmann bodies that are easy to isolate

*tilapia grow quickly and cost less to raise than pigs

*tilapia islets are resistant to hypoxia, thought to contribute to graft loss

*tilapia do not express alpha (1,3) gal, a carbohydrate structure present on mammalian cells that causes hyperacute rejection Read more

Posted on by Quinn Eastman in Immunology Leave a comment

A few links for BEINGS2015

Several well-known authors, scientists and bioethicists are in downtown Atlanta’s Tabernacle for the #BEINGS2015 conference. Paul Wolpe and the Center for Ethics have been central to organizing the event, and several Emory biomedical and genetics researchers will be involved in shaping the consensus documents that will emerge.

I won’t attempt to summarize the ongoing discussion at this point; with biotechnology, it is difficult to draw a circle around certain topics and say “we’re going to focus on this, but not this” and today was a good example. The border between existing agricultural biotechnology and new organisms seems hard to define.

Three interesting relevant links:

The National Academy of Sciences is launching an effort to guide decision making on human gene editing technologies such as Cas9/CRISPR

Collection of scientists’ comments on human gene editing and Cas9/CRISPR in Nature Biotechnology

Nature Chem Bio paper on engineered yeast that “paves way for home brew heroin”. Interesting role of FBI in overseeing this emerging area, and note that full production of opiates in yeast may look close, but is still not yet possible.

 

Posted on by Quinn Eastman in Uncategorized Leave a comment

CRISPR gene editing can miss its mark

Yanni Lin, TJ Cradick, Gang Bao and colleagues from Georgia Tech and Emory reported recently in Nucleic Acids Research on how the CRISPR/Cas9 gene editing system can sometimes miss its mark.

CRISPR/Cas9 has received abundant coverage from science-focused media outlets. Basically, it is a convenient system for cutting DNA in cells in a precise way. This paper shows that the CRISPR/Cas9 system can sometimes cut DNA in places that don’t exactly match the designed target.

Here we show that CRISPR/Cas9 systems can have off-target cleavage when DNA sequences have an extra base or a missing base at various locations compared with the corresponding RNA guide strand…Our results suggest the need to perform comprehensive off-target analysis by considering cleavage due to DNA and sgRNA bulges in addition to base mismatches.

CRISPR/Cas9 could be used to develop therapies for humans for genetic blood diseases such as sickle cell or thalassemia, and this paper does not change that potential. But the authors are cautioning fellow scientists that they need to design their tools carefully and perform quality control. Other investigators have made similar findings.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Addendum on CRISPR

An excellent example of the use of CRISPR gene editing technology came up at the Emory-Children’s Pediatric Research Center’s Innovation Conference this week.

Marcela Preininger, who is working with cardiomyocyte stem cell specialist Chunhui Xu, described her work (poster abstract 108) on cells derived from a 12 year old patient with an inherited cardiac arrhythmia syndrome: catecholaminergic polymorphic ventricular tachycardia or CPVT. Her team has obtained skin fibroblasts from the patient, and converted those cells into induced pluripotent stem cells, which can then be differentiated into cardiac muscle cells or cardiomyocytes.

Working with TJ Cradick, director of the Protein Engineering Facility at Georgia Tech, Preininger is testing out CRISPR gene editing as a means of correcting the defect in this patient’s cells, outside the body. Cradick says that while easy and efficient, RNA-directed CRISPR can be lower in specificity compared to the protein-directed TALEN technology.

From Preininger’s abstract:

Once the mutation has been corrected at the stem cell level, we will investigate whether the repaired (mutation-free) iPS cells can be differentiated into functional cardiomyocytes with normal Ca2+ handling properties, while closely monitoring the cells for mutagenic events. Pharmacological restoration of the normal myocardial phenotype will also be optimized and explored in our model.

Posted on by Quinn Eastman in Heart Leave a comment

A CRISPR way to edit DNA

The CRISPR/Cas gene editing system has a lot of buzz behind it: an amusingly crunchy name, an intriguing origin, and potential uses both in research labs and even in the clinic. We heard that Emory scientists are testing it, so an explainer was in order.

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system was originally discovered by dairy industry researchers seeking to prevent phages, the viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt. Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information to fight off the phages by chewing up their DNA.

At Emory, infectious disease specialist David Weiss has published research on CRISPR in some types of pathogenic bacteria, showing that they need parts of the CRISPR system to evade their hosts and stay infectious. Biologist Bruce Levin has modeled CRISPR-mediated immunity’s role in bacterial evolution.

What has attracted considerable attention recently is CRISPR/Cas-derived technology, which offers the ability to dive into the genome and make a very precise change. Scientists have figured out how to retool the CRISPR/Cas machinery – the enzymes that do the chewing of the phage DNA — into enzymes that can be targeted by an external guide.

For biologists in the laboratory, this is a way to probe a gene’s function by making an animal with its genes altered in a certain way. The method is gaining popularity here at Emory. Geneticist Peng Jin reports:

“CRISPR is much more efficient and quicker than traditional homologous recombination. One can directly inject the plasmid and guide RNA into mouse embryo to make knockout mice. You can also target multiple genes at the same time.”

The traditional method Jin refers to involves taking cultured embryonic stem cells, zapping DNA carrying a modified or disabled gene into them, and hoping that the cells’ repair machinery sews the DNA into the genome in the right way. Usually they have to use antibiotics and drugs to screen out all the cells where the DNA gets jammed into the genome haphazardly. Also, Jin adds that CRISPR/Cas technology can be used for whole-genome screens.

Tamara Caspary, a developmental biologist and scientific director of Emory’s transgenic mouse and gene targeting core, says she and her core team are in the process of developing and validating CRISPR, so that the technique could be accessible to many Emory investigators.

Potential clinical uses: Japanese scientists have proposed that CRISPR/Cas be employed against HIV infection. One can envision similar gene therapy applications.

Posted on by Quinn Eastman in Uncategorized 4 Comments