Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

hematology

Bad neighbors cause bad blood -> cancer

Certain DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells, cancer researchers have found.

Many cancer-driving mutations are “cell-autonomous,” meaning the change in a cell’s DNA makes that same cell grow more rapidly. In contrast, an indirect neighbor cell effect was observed in a mouse model of Noonan syndrome, an inherited disorder that increases the risk of developing leukemia.

bone-marrow-300

In mouse bone marrow, mesenchymal stem cells (red), which normally nurture blood stem cells, produce a signal that is attractive for monocytes. The monocytes (green) prod nearby blood stem cells to proliferate, leading to leukemia. From Dong et al Nature (2016).

The findings were published Wednesday, October 26 in Nature.

The neighbor cell effect could be frustrating efforts to treat leukemias in patients with Noonan syndrome and a related condition, juvenile myelomonocytic leukemia (JMML). That’s because bone marrow transplant may remove the cancerous cells, but not the cause of the problem, leading to disease recurrence. However, the researchers show that a class of drugs can dampen the cancer-driving neighbor effect in mice. One of the drugs, maraviroc, is already FDA-approved against HIV infection.

“Our research highlights the importance of the bone marrow microenvironment,” says Cheng-Kui Qu, MD, PhD, professor of pediatrics at Emory University School of Medicine, Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta. “We found that a disease-associated mutation, which disturbs the niches where blood stem cell development occurs, can lead to leukemia formation.”

Editorial note: This Nature News + Views, aptly titled “Bad neighbors cause bad blood,” explains JMML, and how the relapse rate after bone marrow transplant is high (about 50 percent). It also notes that a variety of genetic alterations provoke leukemia when engineered into bone marrow stromal cells in mice (like this), but Qu and his colleagues described one that is associated with a known human disease.

Noonan syndrome often involves short stature, distinctive facial features, congenital heart defects and bleeding problems. It occurs in between one in 1000 to one in 2500 people, and can be caused by mutations in several genes. The most common cause is mutations in the gene PTPN11. Children with Noonan syndrome are estimated to have a risk of developing leukemia or other cancers that is eight times higher than their peers.
Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Tapping evolution to improve biotech products

Scientists can improve protein-based drugs by reaching into the evolutionary past, a paper published this week in Nature Biotechnology proposes.

As a proof of concept for this approach, the research team from Emory, Children’s Healthcare of Atlanta and Georgia Tech showed how “ancestral sequence reconstruction” or ASR can guide engineering of the blood clotting protein known as factor VIII, which is deficient in the inherited disorder hemophilia A.

fviii_2r7e

Structure of Factor VIII

Other common protein-based drugs include monoclonal antibodies, insulin, human growth hormone and white blood cell stimulating factors given to cancer patients. The authors say that ASR-based engineering could be applied to other recombinant proteins produced outside the human body, as well as gene therapy.

It has been possible to produce human factor VIII in recombinant form since the early 1990s. However, current factor VIII products still have problems: they don’t last long in the blood, they frequently stimulate immune responses in the recipient, and they are difficult and costly to manufacture.

Experimental hematologist and gene therapist Chris Doering, PhD and his colleagues already had some success in addressing these challenges by filling in some of the sequence of human factor VIII with the same protein from pigs.

“We hypothesized that human factor VIII has evolved to be short lived in the blood to reduce the risk of thrombosis,” Doering says. “And we reasoned that by going even farther back in evolutionary history, it should be possible to find more stable, potent relatives.”

Doering is associate professor of pediatrics at Emory University School of Medicine and Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta. The first author of the paper is former Molecular and Systems Pharmacology graduate student Philip Zakas, PhD.

Doering’s lab teamed up with Trent Spencer, PhD, director of cell and gene therapy for the Aflac Cancer and Blood Disorders Center, and Eric Gaucher, PhD, associate professor of biological sciences at Georgia Tech, who specializes in ASR. (Gaucher has also worked with Emory biochemist Eric Ortlund – related item on ASR from Gaucher)

ASR involves reaping the recent harvest of genome sequences from animals as varied as mice, cows, goats, whales, dogs, cats, horses, bats and elephants. Using this information, scientists reconstruct a plausible ancestral sequence for a protein in early mammals. They then tweak the human protein, one amino acid building block at a time, toward the ancestral sequence to see what kinds of effects the changes could have. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment

Graft vs host? Target the aurora

 

Graft-vs-host disease is a common and potentially deadly complication following bone marrow transplants, in which immune cells from the donated bone marrow attack the recipient’s body.

Winship Cancer Institute’s Ned Waller and researchers from Children’s Healthcare of Atlanta and Yerkes National Primate Research Center were part of a recent Science Translational Medicine paper that draws a bright red circle around aurora kinase A as a likely drug target in graft-vs-host disease.

Aurora kinases are enzymes that control mitosis, the process of cell division, and were first discovered in the 1990s in yeast, flies and frogs. Now drugs that inhibit aurora kinase A are in clinical trials for several types of cancer, and clinicans are planning to examine whether the same type of drugs could help with graft-vs-host disease.

Leslie Kean, a pediatric cancer specialist at Seattle Children’s who was at Emory until 2013, is the senior author of the STM paper. Seattle Childrens’ press release says that Kean wears a bracelet around her badge from a pediatric patient cured of leukemia one year ago, but who is still in the hospital due to complications from graft-vs-host. Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Regulatory B cells: old dogs reveal their new tricks

B cells are workhorses of the immune system. Their main function is to produce antibodies against bacteria or viruses when they encounter something that they recognize. But recently researchers have been getting hints that certain kinds of B cells can also have a calming effect on the immune system. This property could come in handy with hard-to-treat conditions such as graft-vs-host disease, multiple sclerosis, or Crohn’s disease.

Hematologist Jacques Galipeau has found that B cells treated with an artificial hybrid molecule called GIFT15 turn into “peacemakers”. These specially treated B cells can tamp down the immune system in an experimental animal model of multiple sclerosis, suggesting that they could accomplish a similar task with the human disease.

Galipeau’s paper in Nature Medicine from August 2009 says succinctly: “We propose that autologous GIFT15 B regulatory cells may serve as a new treatment for autoimmune ailments.” Galipeau, a recent arrival to Emory from McGill University in Montreal, explains this tactic and other aspects of personalized cell therapy in the video above. Read more

Posted on by Quinn Eastman in Immunology Leave a comment