Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Jacques Galipeau

Cancer immunotherapy, meet chimera

697px-Chimera_d'arezzo,_fi,_03

In Greek mythology, the chimera was a monstrous fire-breathing creature composed of the parts of three animals: a lion, a snake and a goat.

Adoptive cell transfer is advancing as a cancer immunotherapy technique. It involves removing some of a patient’s immune cells, culturing them in the laboratory, and then infusing the cells back into the patient. The idea is to enhance the ability of the immune cells to attack the tumors far beyond what the immune system was able of doing on its own.

Two promising examples are the National Cancer Institute’s approach of treating advanced melanoma with IL-2-stimulated immune cells, and several investigators’ approach of genetically engineering T cells to attack leukemias or lymphomas.

Jacques Galipeau and colleagues at Winship Cancer Institute have developed a chimeric molecule for stimulating immune cells, which appears to have unique powers beyond simply the sum of its two parts. The molecule is called GIFT4, a fusion of the immune signaling molecules GM-CSF (often used in cancer treatment) and IL-4.

Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Freezing stem cells disrupts their function

What applies to meat, vegetables and fish may also apply to cells for use in cell therapy: frozen often isn’t quite as good.

Ian Copland and colleagues from Emory’s Personalized Immunotherapy Center have a paper this week in Stem Cells Reports discussing how freezing and thawing stem cells messes them up. Specifically, it disrupts their actin cytoskeletons and impairs their ability to find their niches in the body. Culturing the cells for 48 hours after thawing does seem to correct the problem, though.

The findings have some straightforward implications for researchers planning to test cell therapies in clinical applications. The authors conclude:

Until such time as a cryopreservation and thawing procedure can yield a viable and fully functional MSC product immediately after thawing, our data support the idea of using live MSCs rather than post-thaw cryo MSCs for clinical evaluation of MSCs as an immunosuppressive agent.

Notably, the Emory Personalized Immunotherapy Center has built a process designed around offering never-frozen autologous (that is, the patient’s own) mesenchymal stem cells, as therapies for autoimmune disorders such as Crohn’s disease.

Posted on by Quinn Eastman in Immunology Leave a comment

Mix-and-match immune regulators

Go check out the article on the Emory Office of Technology Transfer’s site on Jacques Galipeau and the artificial chimeric immune stimulators he’s invented. He and his colleagues take one immune regulatory molecule, GM-CSF, and stick it onto others, creating a series of potent immune stimulants he calls “fusokines.” According to Galipeau, one of them turns antibody-producing B cells into The Hulk. Another is like a five hour energy drink.

These super-stimulants may be especially ray ban outlet effective in the realm of cancer, where the immune system is not responding to a stealthy threat. But in dealing with autoimmune diseases such as multiple sclerosis or inflammatory bowel disease, it is more necessary to rein in over-enthusiastic immune cells. Galipeau has devised a fusokine that apparently reprograms cells into being more orderly.

 

Posted on by Quinn Eastman in Immunology Leave a comment

Emory University Hospital Set to Be Launch Site for EPIC

Can it really be possible to transform a person’s own cells into a weapon against various forms of disease? And what if those very cells could be retrained to attack cancer cells or to prevent autoimmune diseases?

Answers to these questions and many more are about to soon be realized, as Emory University Hospital will serve as the launch site for the very appropriately-named EPIC (Emory Personalized Immunotherapy Center).

The new Center, which is the creation of Dr. Jacques Galipeau, MD, professor of hematology and medical oncology & pediatrics of Emory University, will soon be operational after final touches have been put on construction of the lab. This cell processing facility will foster development of novel personalized cellular therapies for Emory patients facing catastrophic ailments and unmet medical needs.

According to Galipeau, the premise of EPIC and its overlying mission will focus on cellular and biological therapies that use a patient’s own cells as a weapon to seek and destroy cells that actually make a person sick. In partnership with the Winship Cancer Institute of Emory University, Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center and the Emory School of Medicine, EPIC seeks to improve the health of children and adults afflicted with cancer and immune disease.

“First and foremost, we seek to bring a level of care and discovery that is first in Georgia, first in human and first in child. Blood and marrow derived cells have been used for more than a quarter century to treat life threatening hematological conditions and are now established therapies worldwide. More recently, the use of specific adult somatic cells from marrow, blood and other tissues are being studied in cellular medicine of a wide array of ailments including heart, lung, neurological and immune diseases”, says Galipeau. The use of blood borne immune cells can also be exploited for treatment of cancer, autoimmune disease, organ transplantation and chronic viral illnesses such as HIV.

Galipeau said that once operational, EPIC will begin by working with Crohn’s disease in pediatric and adult patients, an inflammatory bowel disease. Symptoms of Crohn’s disease include severe abdominal pain, diarrhea, fever, weight loss, and the inability for a child to properly grow. Resulting bouts of inflammation may also affect the entire digestive tract, including the mouth, esophagus and stomach. In some cases, a radical surgery involving the removal of part of the lower intestinal tract is required.

“There is no current answer for what specifically causes Crohn’s disease, nor is there a cure. But we hope that through our research and efforts, we will be able to first target the inflammatory mechanisms in these patients through immunotherapy, and in turn reduce the amount of flare-ups and limit the damage that occurs from this disease,” says Galipeau.

Galipeau says the EPIC program could represent a powerful cornerstone to the launch and the development of an entirely new, Emory-based initiative which bundles the strengths of the School of Medicine, Emory University Hospital, Children’s Healthcare of Atlanta, and many Woodruff Health Sciences Center centers of excellence, says Galipeau.

“My ultimate goal is to elevate the biomedical scientific and scholarly enterprise to a higher level – making a difference in the lives of people. The EPIC program and multi-levels of support could be a fundamental underpinning to our success.” On the other hand, for those who are highly interested to have a career in the medical field, they can information like how to become a pharmacy technician.

Posted on by admin in Immunology Leave a comment

Regulatory B cells: old dogs reveal their new tricks

B cells are workhorses of the immune system. Their main function is to produce antibodies against bacteria or viruses when they encounter something that they recognize. But recently researchers have been getting hints that certain kinds of B cells can also have a calming effect on the immune system. This property could come in handy with hard-to-treat conditions such as graft-vs-host disease, multiple sclerosis, or Crohn’s disease.

Hematologist Jacques Galipeau has found that B cells treated with an artificial hybrid molecule called GIFT15 turn into “peacemakers”. These specially treated B cells can tamp down the immune system in an experimental animal model of multiple sclerosis, suggesting that they could accomplish a similar task with the human disease.

Galipeau’s paper in Nature Medicine from August 2009 says succinctly: “We propose that autologous GIFT15 B regulatory cells may serve as a new treatment for autoimmune ailments.” Galipeau, a recent arrival to Emory from McGill University in Montreal, explains this tactic and other aspects of personalized cell therapy in the video above. Read more

Posted on by Quinn Eastman in Immunology Leave a comment