Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Joshy Jacob

Antibody diversity mutations come from a vast genetic library

Vaccine scientists want to nudge the immune system into producing antibodies that will protect us from infection. In doing so, they are playing with fire – in a limited way. With every healthy antibody response, a process of internal evolution takes place among B cells, the immune cells that produce antibodies. It’s called “somatic hypermutation.”

In the lymph nodes, individual B cells undergo an accelerated rate of mutation. It’s as if those B cells’ DNA were being cooked with radiation or mutagenic chemicals – but only in a few genes. Then the lymph nodes select the B cells with high-affinity antibodies.

Gordon Dale, a just-defended graduate student from Joshy Jacob’s lab in Emory Vaccine Center, has a new paper in Journal of Immunology that sheds light on how somatic hypermutation takes place in both mice and humans.

In particular, Dale and Jacob found that the mutations that occur in human and mouse antibody genes are not random. They appear to borrow information from gene segments that are leftovers from the process of assembling antibody DNA in B cells.

In a mix and match process called VDJ recombination, B cells use one of many V, D, and J segments to form their antibody genes. What Dale and Jacob were looking at occurs after the VDJ step, when B cells get stimulated as part of an immune response.

They analyzed the patterns of mutations in human and mouse antibody genes, and found that mutations tend to come together, in a way that suggests that they are being copied from leftover V segments. They call this pattern “tem Read more

Posted on by Quinn Eastman in Immunology Leave a comment

2009 H1N1 flu strain could give clues to universal flu vaccine?

Last year, when the H1N1 flu epidemic was a major public health concern, a relatively low proportion of individuals getting sick were elderly, compared to previous flu epidemics. To explain this, scientists hypothesized that flu strains that circulated decades ago were similar enough to the novel swine-origin H1N1 strain to provide some immune protection.

A universal flu vaccine would eliminate the guesswork associated with the yearly flu shot

Now, researchers at Emory’s Influenza Pathogenesis & Immunology Research Center have directly tested that hypothesis in mice, and it holds up. Exposure of mice to flu strains that circulated in 1947 or 1934 induced “robust cross-protective immune responses” and can protect them against a lethal challenge with 2009 H1N1 virus, they report in Journal of Immunology.

Ioanna Skountzou and Dimitrios Koutsananos are co-first authors of the paper.

The Emory team, led by Joshy Jacob, also reports that antibodies produced in response to the 2009 H1N1 flu strain exhibit broad cross-reactivity — they react with other H1N1 strains as well as against H3N2 flu strains. They write:

The fact that the 2009 H1N1 virus can induce such cross-reactive Abs raises the intriguing possibility that viruses such as A/California/04/2009 can be used for vaccines to induce broadly cross-reactive humoral immune responses against influenza viruses. Identifying the mechanism behind this broad reactivity may enable us to design broadly cross-reactive universal influenza vaccines.

National Institute of Allergy and Infectious Diseases director Tony Fauci, when he was at Emory for the H1N1 flu conference in April, discussed the idea of a universal flu vaccine:

Posted on by Quinn Eastman in Immunology Leave a comment