Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

macular degeneration

Relocating central vision

Susan Primo, MD

Susan Primo, MD

The patients seen by Emory low vision specialist Susan Primo, OD, MPH, have already exhausted most of their treatment options. They’ve completed medication regimens or had surgery to slow advanced age-related macular degeneration (AMD), a leading cause of blindness in the elderly. But still they don’t see well.

That’s where Primo comes in. At the Emory Eye Center, she’s studying whether behavioral modifications can lead to a change in brain activity to maximize use of remaining vision.

In macular degeneration, the macula—a layer of tissue on the inside back wall of the eyeball—gradually deteriorates. That delicate tissue is responsible for visual acuity, particularly in the center of the retina. Central vision is needed for seeing small and vivid details such as words on a page or the color of a traffic light, which means it is vital for common daily tasks such as reading or driving.

In more than two decades of working with patients who are visually impaired, Primo realized that people typically use their peripheral vision to compensate for loss in central vision. Studies have shown that people with progressive central vision loss compensate by spontaneously adopting a preferred retinal location (PRL) that takes over responsibility for visual clarity.

Normal vision

Normal vision

Vision with macular degeneration

But Primo and Georgia Tech psychologist Eric Schumacher wanted to know whether using these peripheral regions causes a change in how the brain is organized. Armed with Schumacher’s expertise in functional magnetic resonance imaging (fMRI) and Primo’s clinical experience, the researchers did indeed discover continued activity in the part of the brain that maps to the macula. The brain scans of people with AMD who had developed their peripheral vision showed substantially more activity than those of people who had not developed a PRL. Their study appeared in the December 2008 edition of Restorative Neurology and Neuroscience.

In a current study, Primo and Schumacher are exploring whether occupational training and biofeedback can help people with AMD focus on using good retinal cells and in turn speed up the brain’s reorganization.

“Although others have tried to study this reorganization of macular degeneration before, no one, to our knowledge, has tried to influence it,” says Primo. “Yet it’s important to begin to come up with therapies, treatments, and technology to help patients begin to use their residual vision faster and better than they could before.”

Posted on by admin in Uncategorized Leave a comment