Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

metamorphosis

Hippo dances with hormones

Although fruit flies don’t develop cancer, cancer and stem cell researchers have been learning a great deal from fruit flies – in particular, mutant flies with overgrown organs that resemble hippopotamuses.

A fly gene called Hippo and its relatives in mammals normally block cell proliferation and limit organ size. When flies have mutations in Hippo or other genes (together dubbed the Hippo pathway), the resulting overgrowth distorts their tissues into hippopotamus-like bulges. See Figure 3 of this review for an example. In humans, the Hippo pathway is involved in forming embryonic stem cells, suppressing cancerous growth, and also in regenerative growth and wound healing..

Working with flies, researchers at Emory have found that the abnormal growth induced by Hippo pathway disruption depends on genes involved in responding to the steroid hormone ecdysone.

Their results were published Thursday, July 2 in Developmental Cell.

“Ecdysone is, to some degree, the fly version of estrogen,” says senior author Ken Moberg, PhD, associate professor of cell biology at Emory University School of Medicine.

Ecdysone

In fly larvae, ecdysone triggers metamorphosis, in which adult structures such as wings and eyes emerge from small compartments called imaginal discs.. Ecdysone has a chemical structure like that of estrogen, testosterone and other steroid hormones found in humans. Ecdysone is not sex-specific, but it acts with the same mechanism as other steroid hormones, diffusing into cells and binding proteins that bind DNA and regulate gene activity. Read more

Posted on by Quinn Eastman in Cancer Leave a comment