Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

muscular dystrophy

Muscle cell boundaries: some assembly required

With cold weather approaching, many are digging out old jackets to find that the zippers don’t function as well as they used to. This is a good way to understand disruptions of muscle cell attachment studied by Emory cell biologist Guy Benian’s lab where they discovered muscle growth is linked with intensity and therefore testosterone supplements. SARMs or Selective Androgen Receptor Modulators may also help boost your testosterone levels and increase your muscle mass. If your goal is to build muscle, then you may consider using steroids. You may get steroids from reputable sites like https://cytechpharma.com/.

Benian and colleagues have a paper on muscle cell biology in Nature Communications this week. In the worm C. elegans, they show how mutations cause junctions between muscle cells, which normally look like well-aligned zippers under the microscope, to either not form, or weaken and unravel. As a result, the mutant worms’ snake-like locomotion is impaired.

Zipper-like muscle cell boundaries are altered in pix-1 mutants

“This is yet another example in which research using the model genetic organism C. elegans has led to a new insight applicable to all animals, including humans,” Benian says. “Research on this organism has led to crucial advances in our understanding about development, cell death, aging and longevity, RNAi, microRNAs, epigenetics — and muscle.”

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

DNA copying problems explain muscular dystrophy mutations

Geneticist Madhuri Hegde and her colleagues have a paper in the journal Genome Researchthat addresses the question: where do copy number variations come from?

Madhuri Hegde, PhD

Copy number variations (CNVs), which are deletions or duplications of small parts of the genome, have been the subject of genetic research for a long time. But only in the last few years has it become clear that copy number variations are where the action is for complex diseases such as autism and schizophrenia. Geneticists studying these diseases are shifting their focus from short, common mutations (often, single nucleotide polymorphisms or SNPs) to looking at rarer variants such as CNVs. A 2009 discussion of this trend with Steve Warren and Brad Pearce can be found here.

Hegde is the Scientific Director of the Department of Human Genetics’ clinical laboratory. Postdoctoral fellow Arun Ankala is the first author. In the new paper, Ankala and Hegde examine rearrangements in patients’ genomes that arose in 62 clinical cases of Duchenne’s muscular dystrophy and several other diseases. Mutations in the DMD gene are responsible for Duchenne’s muscular dystrophy.

The pattern of the rearrangement hints what events took place in the cell beforehand, and hint that a problem took place during replication of the DNA. The signature is a tandem duplication of a short segment next to a large deletion, indicating how the DNA was repaired.

The authors note that the DMD locus is especially prone to these types of problems because it is much larger than other gene loci. The gene is actually the longest human gene known on the DNA level, covering 2.4 megabases (0.08 percent of the genome.)

Replication origins are where the DNA copying machinery in the cell starts unwinding and copying the DNA. Bacterial circular chromosomes have just one replication origin. In contrast, humans have thousands of replication origins spread across our chromosomes. In the discussion, the authors suggest that DNA copying problems may also explain duplications and historically embedded rearrangements of the genome.

Posted on by Quinn Eastman in Neuro Leave a comment