Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Neuroscience Graduate Program

Galanin: the ‘keep calm and carry on’ hormone?

A few celebrity neuropeptides have acquired a reputation – sometimes exaggerated — and a flavor, corresponding to their functions in the brain.

Oxytocin has the aura of a “cuddle hormone” because of its role in social bonding and reproduction. Endorphins are the body’s natural pain-killers, long thought to be responsible for “runner’s high.” Hypocretin/orexin, missing in narcolepsy, is a stabilizer of wakefulness as well as motivation.

Galanin, studied by Emory neuroscientist David Weinshenker’s lab, is not as flashy as other neuropeptides. While it is accumulating an intriguing track record, galanin appears to play subtly different roles depending on where it is expressed. It is tempting to call galanin the “keep calm and carry on” hormone, but the research on galanin is so complex it’s difficult to pin down.

Graduate student Rachel Tillage and colleagues have a paper this week in Journal of Neuroscience detailing how galanin’s production by one group of neurons in the brainstem confers stress resilience in mice.

This image shows the rough location for the locus coeruleus in the human brain. In mice, production of galanin in the locus coeruleus cushions against stress.

The new paper shows that exercise increases galanin in the locus coeruleus, a region in the brainstem that produces norepinephrine (important for attention, alertness, anxiety and muscle tone). Galanin can provide protection against the anxiety-inducing effects of artificial but very specific locus coeruleus activation by optogenetics.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Vulnerability to cocaine uncovered in adolescent mouse brains

Editor’s note: Guest post from Neuroscience graduate student Brendan O’Flaherty. Companion paper to the Gourley lab’s recently published work on fasudil, habit modification and neuronal pruning.

An Emory study has discovered why teenager’s brains may be especially vulnerable to cocaine. Exposure to small amounts of cocaine in adolescence can disrupt brain development and impair the brain’s ability to change its own habits, the study suggests.

Guest post from Brendan O’Flaherty

The results were published in the April 1, 2017 issue of Biological Psychiatry, by researchers at Yerkes National Primate Research Center.

As most of the people are approaching Sylvan Detox Center in Los Angeles to get rid off drug addiction. Shannon Gourley has shared his views on drug habit and its ill effects. Drug seeking habits play a major role in drug addiction, says senior author Shannon Gourley, PhD, assistant professor of pediatrics, psychiatry and behavioral sciences at Emory University School of Medicine and Yerkes National Primate Research Center. The first author of the paper is former Emory graduate student Lauren DePoy, PhD.

When it comes to habits, cocaine is especially sneaky. Bad habits like drug use are already very difficult to change, but cocaine physically changes the brain, potentially weakening its ability to “override” bad habits. Although adults are susceptible to cocaine’s effects on habits, adolescent brains are especially vulnerable.Hence, it is always better to seek the help of experts from Cornerstone Healing Center to get rid off drug habits.

“Generally speaking, the younger you are exposed to cocaine in life, the more likely you are to have impaired decision making,” Gourley says.

Shannon Gourley, PhD, in lab

To understand why adolescent brains are especially vulnerable to cocaine, the researchers studied the effects of cocaine exposure on how the mice make decisions about food.

“I think it’s pretty amazing that we can actually talk to mice in a way that allows them to talk back,” Gourley says. “And then we can utilize a pretty tremendous biological toolkit to understand how the brain works.”

Researchers injected adolescent mice five times with either saline or cocaine. Both groups of animals then grew up without access to cocaine. Researchers then trained the mice to press two buttons, both of which caused food to drop into the cage. Since both buttons rewarded the mice equally, the mice pushed each button half the time.

Over time, pushing the two buttons equally could become a habit. To test this, the researchers then played a trick on the mice. When one of the buttons was exposed, the researchers starting giving the mice food pellets for free, instead of rewarding them for button-pressing.

“What the mouse should be learning is: ‘Ah hah, wait a minute, when I have access to this button I shouldn’t respond, because my responding doesn’t get me anything,‘” Gourley says. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Brain enhancement: can and should we do it?

The Emory Center for Ethics and Emory’s Neuroscience Graduate Program recently co-hosted a symposium discussing the ethics of brain-enhancing technologies, both electronic and pharmacological.

Georgia Tech biomedical engineer Steve Potter explained his work harnessing the behavior of neurons grown on a grid of electrodes. The neurons, isolated from rats, produce bursts of electrical signals in various patterns, which can be “tuned” by the inputs they receive.

“The cells want to form circuits and wire themselves up,” he said.

As for future opportunities, he cited the technique of deep brain stimulation as well as clinical trials in progress, including one testing technology developed by the company Neuropace that monitors the brain’s electrical activity for the purpose of suppressing epileptic seizures. Similar technology is being developed to help control prosthetic limbs and could also promote recovery from brain injury or stroke, he said. Eventually, electrical stimulation that is not modulated according to feedback from the brain will be seen as an overly blunt instrument, even “barbaric,” he said.

Mike Kuhar, a neuroscientist at Yerkes National Primate Research Center, introduced the topic of cognitive enhancers or “smart drugs.” He described one particular class of proposed cognitive enhancers, called ampakines, which appear to improve functioning on certain tasks without stimulating signals throughout the brain. Kuhar questioned whether “smart drugs” pose unique challenges, compared to other types of drugs. From a pharmacology perspective, he said there is less distinction between therapy and enhancement, compared to a perspective imposed by regulators or insurance companies. He described three basic concerns: safety (avoiding toxicity or unacceptable side effects), freedom (lack of coercion from governments or employers) and fairness.

“Every drug has side effects,” he said. “There has to be a balance between the benefits versus the risks, and regulation plays an important role in that.”

He identified antidepressants and treatments for attention deficit-hyperactivity disorder or the symptoms of Alzheimer’s disease as already raising similar issues. The FDA has designated mild cognitive impairment associated with aging as an open area for pharmaceutical development, he noted.

James Hughes, a sociologist from Trinity College and executive director of the Institute for Ethics and Emerging Technologies, welcomed new technologies that he said could not only treat disease, but also enhance human capabilities and address social challenges such as criminal rehabilitation. However, he did identify potential “Ulysses problems”, where users of new technologies would need to exercise control and judgment.

In contrast, historian and Judaic scholar Hava Tirosh-Samuelson, from Arizona State University, decried an “overly mechanistic and not culturally-based understanding of what it means to be human.” She described transhumanism as a utopian extension of 19th century utilitarianism as expounded by thinkers such as Jeremy Bentham.

“Is the brain simply a computational machine?” she asked.

The use of military metaphors – such as “the war on cancer” – in the context of mental illness creates the false impression that everything is correctable or even perfectable, she said.

Emory neuroscience program director Yoland Smith said he wants ethics to become a strong component of Emory’s neuroscience program, with similar discussions and debates to come in future years.

Posted on by Quinn Eastman in Neuro Leave a comment