Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

nitric oxide

There will be microparticles (in stored blood)

More than 9 million people donate blood in the United States every year, according to the American Red Cross. Current guidelines say that blood can be stored for up to six weeks before use.

What happens to red blood cells while they are in storage, which transfusion experts call the “storage lesion”? Multiple studies have shown that older blood may have sub-optimal benefits for patients receiving a transfusion. The reasons include: depletion of the messenger molecule nitric oxide, lysis of red blood cells and alterations in the remaining cells’ stiffness.

To that list, we could add the accumulation of microparticles, tiny membrane-clothed bags that contain proteins and RNA, which have effects on blood vessels and the immune system upon transfusion. Note: microparticles are similar to exosomes but larger – the dividing line for size is about 100 nanometers. Both are much smaller than red blood cells.

EUH blood bank director John Roback recently gave a talk on the blood storage issue, and afterwards, cardiologist Charles Searles and research fellow Adam Mitchell were discussing their work on microparticles that come from red blood cells (RBCs). They have been examining the effects RBC-derived microparticles have on endothelial cells, which line blood vessels, and on immune cells’ stickiness.Red blood cell microparticles280

Mitchell mentioned that he had some striking electron microscope images of microparticles and some of the particles looked like worms. With the aim of maintaining Lab Land’s “Cool Image” feature, I resolved to obtain a few of his photos, and Mitchell generously provided several.

“Those worms definitely had me mesmerized for a while,” he says.

In his talk, Roback described some of the metabolomics research he has been pursuing with Dean Jones. Instead of focusing only on how long blood should be stored, Roback’s team is examining how much differences between donors may affect donated blood’s capacity to retain its freshness. Read more

Posted on by Quinn Eastman in Heart, Immunology Leave a comment

The age of blood

Nature Medicine has a nice feature from Jeanne Erdmann highlighting the debate over how long donated blood can be stored. It sets the stage for two prospective clinical trials (RECESS and ABLE), which recently concluded but are still being analyzed. The trials were looking at how the age of stored blood affects patients undergoing cardiac surgery or in intensive care, respectively. Erdmann also mentions that the NIH’s Clinical Center already has tightened its standards for blood storage time.

Emory Blood Bank director John Roback and cardiologist Arshed Quyyumi have been participants in this debate, both theoretically and experimentally. In 2011, they proposed that depletion of the messenger molecule nitric oxide limits the benefits donated blood can provide to patients. In addition to nitric oxide depletion, the “storage lesion” is likely to include several changes, such as lysis of red blood cells, mechanical alterations in the remaining cells, and other chemical changes.

Since then, Emory research has shown that transfusion of donated blood more than three weeks old results in impaired blood vessel function in hospitalized patients, but in contrast, not in healthy volunteers. This information could allow doctors to prioritize fresher blood for patients with cardiovascular diseases.

Posted on by Quinn Eastman in Heart Leave a comment

Nitrite: from cured meat to protected heart

Nitrite may be best known as a food additive used in cured meats such as hot dogs, but medical researchers are studying how it could treat several conditions, including preventing damage to the heart after a heart attack.

Leaders in the nitrite field are meeting May 11 -13, 2011 at Emory Conference Center in Atlanta. One of the lead organizers is David Lefer, PhD, professor of surgery at Emory University School of Medicine and director of the Cardiothoracic Research Laboratory. Lefer discusses the beneficial effects of nitrite in the video below. More information about the meeting is available here.

Scientists think supplying a pulse of nitrite can reduce injury to heart tissue coming from the interruption of blood flow. Several clinical trials are now investigating nitrite as a therapy for conditions such as heart attack, ruptured aneurysm, sickle cell pain crisis and cardiac arrest.

Nitrite acts as the body’s reserve for nitric oxide, which turns on chemical pathways that relax blood vessels. Delivering nitric oxide directly into the body is expensive and hard to control. Unlike nitric oxide, whose lifetime in the body is a few seconds, nitrite is stable and stored in the body’s tissues and can be delivered in a variety of ways. It is converted into nitric oxide under conditions when the body needs it: lack of blood or oxygen. In addition, sodium nitrite has been used as part of a cyanide antidote kit. This means that safety data on large doses of nitrite in critically ill people is available.

In a 2005 paper published in the Journal of Clinical Investigation, Lefer and colleagues showed that nitrite can reduce damage to the hearts of mice after a simulated heart attack. More recently, assistant professor John Calvert and Lefer have shown that internally generated and stored nitrite is an important way that exercise protects the heart from a heart attack.

Some blood pressure studies underway in Europe have participants consume large amounts of beet juice as their source of nitrate, which is then converted to nitrite in the body.

A wave of public concern about nitrite and its relative nitrate in the 1970s focused on their presence in cured meats and their ability to form nitrosamines, which can be carcinogenic. Subsequent investigation showed that actually, most of the nitrite and nitrate in the average adult’s diet come from vegetables such as broccoli and spinach, and that antioxidants such as vitamin C can prevent nitrosamine formation.

Nathan Bryan, a speaker at the conference from UT-Houston, was featured in a recent television news story about herbal supplements designed to boost nitrite in the body.

Posted on by Quinn Eastman in Heart 2 Comments