Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

RNA interference

Deliver, but not to the liver

The potential of a gene-silencing technique called RNA interference has long enticed biotechnology researchers. It’s used routinely in the laboratory to shut down specific genes in cells. Still, the challenge of delivery has held back RNA-based drugs in treating human disease.

RNA is unstable and cumbersome, and just getting it into the body without having it break down is difficult. One that hurdle is met, there is another: the vast majority of the drug is taken up by the liver. Many current RNA-based approaches turn this apparent bug into a strength, because they seek to treat liver diseases. See these articles in The Scientist and in Technology Review for more.

But what if you need to deliver RNA somewhere besides the liver?

Biomedical engineer Hanjoong Jo’s lab at Emory/Georgia Tech, working with Katherine Ferrara’s group at UC Davis, has developed technology to broaden the liver-dominant properties of RNA-based drugs.

Hanjoong Jo, PhD

The results were recently published in ACS Nano. The researchers show they can selectively target an anti-microRNA agent to inflamed blood vessels in mice while avoiding other tissues.

“We have solved a major obstacle of using anti-miRNA as a therapeutic by being able to do a targeted delivery to only inflamed endothelial cells while all other tissues examined, including liver, lung, kidney, blood cells, spleen, etc showed no detectable side-effects,” Jo says. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Fragile but potent: RNA delivered by nanoparticle

An intriguing image for November comes from biomedical engineer Mike Davis’ lab, courtesy of BME graduate student Inthirai Somasuntharam.

Each year, thousands of children undergo surgery for congenital heart defects. A child’s heart is more sensitive to injury caused by interrupting blood flow during surgery, and excess reactive oxygen species are a key source of this damage.

Macrophages with blue nuclei and red cytoskeletons, being treated with green nano particles. The particles carry RNA that shut off reactive oxygen species production.

Macrophages with blue nuclei and red cytoskeletons, being treated with green nano particles. The particles carry RNA that shut off reactive oxygen species production.

Davis and his colleagues are able to shut off cheap oakley reactive oxygen species at the source by targeting the NOX (NADPH oxidase*) enzymes that produce them. This photo, from a 2013 Biomaterials paper, shows green fluorescent nanoparticles carrying small interfering RNA. The RNA precisely shuts down one particular gene encoding a NOX enzyme. Eventually, similar nanoparticles may shield the heart from damage during pediatric heart surgery.

In the paper, Somasuntharam used particles made of a slowly dissolving polymer called polyketals. The particles delivered fragile but potent RNA molecules into macrophages, inflammatory cells that swarm into cardiac tissue after a heart attack. Davis and Georgia Tech colleague Niren Murthy previously harnessed this polymer to deliver drugs that can be toxic to the rest of the body.

The polyketal particles are especially well-suited for delivering a payload to macrophages, since those types of cells (as the name implies) are big eaters. Davis reports his lab has been working on customizing the particles so they can deliver RNA molecules into cardiac muscle cells as well.

*While we’re on the topic of NADPH oxidases, Susan Smith and David Lambeth have been looking for and finding potential drugs that inhibit them.

Posted on by Quinn Eastman in Heart Leave a comment

New opportunities in modulating microRNA

Emory geneticist Peng Jin and his colleagues have a review in the June 25, 2010 issue of Chemistry and Biology exploring whether microRNAs offer new possibilities for pharmacology.

MicroRNAs directly regulate other genes

The microRNA pathway represents both a way for scientists to “knock down” the activity of just one gene in the laboratory, and a major way for cells to regulate their genes during development.

MicroRNAs add a big wallop of complexity on top of the standard model of molecular biology, where the information in DNA is made into RNA, and RNAs make proteins. MicroRNAs don’t get turned into protein, but directly regulate other genes.

Andrew Fire and Craig Mello received the 2006 Nobel Prize in Medicine for their discovery that short pieces of RNA, when introduced into cells, can silence genes. This “RNA interference” tactic hijacks the natural machinery inside the cell that microRNAs use.

In 2008, Jin and coworkers published in Nature Biotechnology their discovery that certain antibiotics called fluoroquinolones (ciprofloxacin is one) can make the RNA interference process work more efficiently — in general. In the review, Jin notes that scientists are starting to look for drugs that act more selectively, disrupting or enhancing a particular microRNA rather than many at once:

Since miRNAs play major roles in nearly every cellular process, the identification and characterization of small-molecule modulators of the RNAi/miRNA pathway will yield fresh insights into fundamental mechanisms behind human disease… Moreover, these RNAi modulators, particularly RNAi enhancers, could potentially facilitate the development of RNA interference as a tool for biomedical research and therapeutic interventions.

Posted on by Quinn Eastman in Uncategorized Leave a comment