Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Xinping Huang

Viral vectors ready for delivery

The phrase “viral vector” sounds ominous, like something from a movie about spies and internet intrigue. It refers to a practical delivery system for the gene of your choice. If you are a biomedical researcher and you want to tweak genes in a particular part of the body in an experimental animal, viral vectors are the way to go.

Viral vector-transduced retinal ganglion cell; dendrites and axons labeled with GFP. Courtesy Felix Struebling via Xinping Huang

Emory’s Viral Vector Core was started when eminent neuroscientist Kerry Ressler was at Emory and is now overseen by geneticist Peng Jin. Technical director Xinping Huang and her colleagues can produce high-titer viral vectors, lentivirus and AAV. Discuss with her the best choice. It may depend on the size of the genetic payload you want to deliver and whether you want the gene to integrate into the genome of the target cell.

As gene therapy and CRISPR/Cas9-style gene editing research progresses, we can anticipate demand for services such as those provided by the Viral Vector Core. [Clinical applications are close, but will not be dealt with in the same place!] Read more

Posted on by Quinn Eastman in Neuro Leave a comment