After a heart attack, cardiac muscle cells die because they are deprived of blood and oxygen. In an adult human, those cells represent a dead end. They can’t change their minds about what kind of cell they’ve become.
In newborn babies, as well as in adult fish, the heart can regenerate after injury. Why can’t the human heart be more fishy? At Emory, researcher Jinhu Wang is seeking answers, which could guide the development of regenerative therapies.
“If we want to understand cardiac regeneration in mammals, we can look at it from the viewpoint of the fish,” he says.
A lot of research in regenerative medicine focuses on the potential of stem cells, which have not committed to become one type of tissue, such as brain, skin or muscle. Wang stresses that the ability of zebrafish hearts to regenerate does not originate from stem cells. It comes from the regular tissues. The cells are induced to go back in time and multiply, although their capacity to regenerate may vary with the age of the animal, he says.
Zebrafish hearts are simpler than mammals’: theirs have just two chambers, while ours have four. Nobel Prize winner Christiane Nusslein-Vollhard has promoted the use of zebrafish as a genetic model in developmental biology. Its embryos are transparent, making it easy to spot abnormalities.
Wang’s fish room in the basement of Emory’s Rollins Research Center contains more than 1000 fish tanks, with different sizes of cage for various ages and an elaborate water recycling system. The adult fish eat brine shrimp that are stored in vats in one corner of the lab. Read more